DOI QR코드

DOI QR Code

Controlling Pore Size of Electrospun Silk Fibroin Scaffold for Tissue Engineering

전기방사를 이용한 조직공학용 실크 피브로인 나노 섬유 지지체의 기공 크기 조절

  • Cho, Se-Youn (Department of Polymer Science and Engineering, Inha University) ;
  • Park, Hyun-Ho (Department of Polymer Science and Engineering, Inha University) ;
  • Jin, Hyoung-Joon (Department of Polymer Science and Engineering, Inha University)
  • 조세연 (인하대학교 나노시스템공학부 고분자신소재공학전공) ;
  • 박현호 (인하대학교 나노시스템공학부 고분자신소재공학전공) ;
  • 진형준 (인하대학교 나노시스템공학부 고분자신소재공학전공)
  • Received : 2012.03.27
  • Accepted : 2012.05.15
  • Published : 2012.09.25

Abstract

Considerable effort has been directed toward the use of silk fibroin as a biotechnological material in biomedical applications on account of its excellent biodegradability, biocompatibility, and unique mechanical properties. For use in tissue engineering, it is very important to design and control the pore architecture of polymeric scaffolds, which provide the vital framework for seeded cells to organize into functioning tissue. In the present study, a silk fibroin scaffold with controlled interconnectivity and pore size was prepared using an electrospinning method with poly(ethylene oxide).

인체의 여러 조직 및 장기를 재생하고자 하는 조직공학에 있어 중요한 요소 중의 하나인 지지체는 세포외기질을 모방한 것으로 손상된 조직을 재생하는데 있어 기본 형틀의 역할을 수행하며, 세포의 분화와 성장 그리고 영양분과 산소의 원활한 공급을 위한 상호 연결된 다공성 구조가 필요하다. 본 연구에서는 실크 피브로인의 조직공학용 지지체로의 응용가능성 향상을 위하여 폴리에틸렌옥사이드를 사용한 보다 넓은 기공과 다공의 연결성을 가지는 실크 피브로인 나노 섬유 지지체를 제조하였다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. Z. Shao and F. Vollrath, Nature, 418, 741 (2002). https://doi.org/10.1038/418741a
  2. G. H. Altman, F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. S. Chen, H. Lu, J. Richmond, and D. L. Kaplan, Biomaterials, 24, 401 (2003). https://doi.org/10.1016/S0142-9612(02)00353-8
  3. H. J. Jin, J. S. Chen, V. Karageorgiou, G. H. Altman, and D. L. Kaplan, Biomaterials, 25, 1039 (2004). https://doi.org/10.1016/S0142-9612(03)00609-4
  4. J. S. Chen, G. H. Altman, V. Karageorgiou, R. Horan, A. Collette, V. Volloch, T. Colabro, and D. L. Kaplan, J. Biomed. Mater. Res. Part A, 67, 559 (2003).
  5. S. Yang, K. F. Leong, and Z. Du, Tissue Eng., 7, 679 (2001). https://doi.org/10.1089/107632701753337645
  6. J. Zeltinger, J. K. Sherwood, and D. A. Graham, Tissue Eng., 7, 557 (2001). https://doi.org/10.1089/107632701753213183
  7. A. G. Mikos and J. S. Temenoff, Electron. J. Biotechnol., 3, 1 (2000).
  8. N. Annabi, J. W. Nichol, X. Zhong, C. Ji, S. Koshy, A. Khademhosseini, and F. Dehghani, Tissue Eng., 16, 371 (2010). https://doi.org/10.1089/ten.teb.2009.0639
  9. K. Whang, K. E. Healy, D. R. Elenz, E. K. Nam, D. C. Tsai, C. H. Thomas, G. Nuber, R. Glorieux, R. Travers, and S. M. Sprague, Tissue Eng., 5, 35 (1999). https://doi.org/10.1089/ten.1999.5.35
  10. S. M. Jo, W. S. Lee, and S. W. Chun, Fiber Tech. Ind., 6, 112 (2002).
  11. X. M. Mo, C. Y. Xu, M. Kotaki, and S. Ramacrishna, Biomaterials, 25, 1883 (2004). https://doi.org/10.1016/j.biomaterials.2003.08.042
  12. D. Li and Y. Xia, Adv. Mater., 16, 1151 (2004). https://doi.org/10.1002/adma.200400719
  13. S. Ramakrishna, K. Fujuhara, W. E. Tae, T. C. Lim, and Z. Ma, World Scientific, 7, 17 (2005).
  14. J. Magoshi, M. Mizuide, and Y. Magoshi, J. Polym. Sci., 17, 515 (1979).
  15. M. Ishida, T. Asakura, M. Yoko, and H. Saito, Macromolecules, 23, 88 (1990). https://doi.org/10.1021/ma00203a017
  16. S. H. Yoon, S. J. Myung, M. Kang, and H. J. Jin, Poymer Science and Technology, 16, 577 (2005)
  17. B. Duan, C. Dong, X. Yuan, and K. Yao, J. Biomater. Sci. Polym. Edn., 15, 797 (2004). https://doi.org/10.1163/156856204774196171

Cited by

  1. In Vivo Osteogenic Differentiation of Human Embryoid Bodies in an Injectable in Situ-Forming Hydrogel vol.6, pp.7, 2013, https://doi.org/10.3390/ma6072978
  2. Chitosan-Based Composite Materials for Prospective Hemostatic Applications vol.16, pp.8, 2018, https://doi.org/10.3390/md16080273