DOI QR코드

DOI QR Code

Evaluation of 1.3-㎛ Wavelength VCSELs Grown by Metal Organic Chemical Vapor Deposition for 10 Gb/s Fiber Transmission

  • Received : 2012.03.23
  • Accepted : 2012.06.27
  • Published : 2012.09.25

Abstract

We have evaluated a 1.3 ${\mu}m$ vertical-cavity surface-emitting laser (VCSEL), whose bottom mirror and central active layer were grown by metal organic chemical vapor deposition (MOCVD) and whose top mirror was covered with a dielectric coating, for 10 Gb/s data transmission over single-mode fibers (SMFs). Successful demonstration of error-free transmission of the directly modulated VCSEL signals at data rate of 10 Gb/s over a 10 km-long SMF was achieved for operating temperatures from $20^{\circ}C$ to $60^{\circ}C$ up to bit-error-rate (BER) of $10^{-12}$. The DC bias current and modulation currents are only 7 mA and 6 mA, respectively. The results indicate that the VCSEL is a good low-power consuming optical signal source for 10 GBASE Ethernet applications under controlled environments.

Keywords

References

  1. E. Kapon and A. Sirbu, "Long-wavelength VCSELS; power-efficient answer," Nature Photon. 3, 27-29 (2009). https://doi.org/10.1038/nphoton.2008.266
  2. K. Prince, M. Ma, T. B. Gibbon, C. Neumeyr, E. Rönneberg, M. Ortisiefer, and I. T. Monroy, "Free-running 1550 nm VCSEL for 10.7 Gb/s transmission in 99.7 km PON," J. Opt. Commun. Networks 3, 399-403 (2011). https://doi.org/10.1364/JOCN.3.000399
  3. J.-C. Charlier and S. Kruger, "Long-wavelength VCSELs ready to benefit 40/100 GbE modules," Lightwave 28, 18-22 (2011).
  4. J. J. Kim, K. H. Kim, M. H. Lee, H. S. Lee, E.-H. Lee, O.-K. Kwon, J. Ron, and B.-S. Yoo, "2.5-Gb/s hybrid single-mode and multimode fiber transmission of 1.5-${\mu}m$ wavelength VCSEL," IEEE Photon. Technol. Lett. 19, 297-299 (2007). https://doi.org/10.1109/LPT.2007.891243
  5. M.-R. Park, O.-K. Kwon, W.-S. Han, K.-H. Lee, S.-J. Park, and B.-S. Yoo, "All-epitaxial InAlGaAs-InP VCSELs in the 1.3-1.6-${\mu}m$ wavelength range for CWDM band applications," IEEE Photon. Technol. Lett. 18, 1717-1719 (2006). https://doi.org/10.1109/LPT.2006.879940
  6. J.-H. Shin, B.-S. Yoo, W.-S. Han, O.-K. Kwon, Y.-G. Ju, and J.-H. Lee, "CW operation and threshold characteristics of all-monolithic InAlGaAs 1.55 ${\mu}m$ VCSELs grown by MOCVD," IEEE Photon. Technol. Lett. 14, 1031-1033 (2002). https://doi.org/10.1109/LPT.2002.1021959
  7. O. K. Kwon, B. S. Yoo, J. H. Shin, J. H. Baek, and B. Lee, "Pulse operation and threshold characteristics of 1.55${\mu}m$ InAlGaAs-InAlAs VCSEL's," IEEE Photon. Technol. Lett. 12, 1132-1134 (2000). https://doi.org/10.1109/68.874212
  8. J.-H. Kim, B.-S. Yoo, J.-H. Shin, W.-S. Han, O.-K. Kwon, Y.-G. Ju, and H.-W. Song, "Fabrication method of densely spaced 1.55 ${\mu}m$ multiple-wavelength vertical-cavity surfaceemitting laser array structure for the application of dense wavelength division multiplexing," Jpn. J. Appl. Phys. 43, 137-139 (2004). https://doi.org/10.1143/JJAP.43.137
  9. H.-W. Song, W. S. Han, J.-H. Kim, O.-K. Kwon, Y.-G. Ju, J.-H. Lee, S.-H. KoPark, and S.-G. Kang, "1.55 ${\mu}m$ bottomemitting InAlGaAs VCSELs with $Al_{2}O_{3}/a$-Si thin-film pairs as top mirror," Electron. Lett. 42, 808-809 (2006). https://doi.org/10.1049/el:20061534
  10. H.-W. Song, W. S. Han, J. Kim, J.-H. Kim, and S.-H. KoPark, "Long-wavelength InAlGaAs VCSELs with $Al_{2}O_{3}$ embedded current-confinement apertures," Electron. Lett. 40, 868-869 (2004). https://doi.org/10.1049/el:20045240
  11. W. Hofmann, M. Müller, P. Wolf, A. Mutig, T. Gründl, G. Böhm, D. Bimberg, and M.-C. Amann, "40 Gbit/s modulation of 1550 nm VCSEL," Electron. Lett. 47, 270-271 (2011). https://doi.org/10.1049/el.2010.3631
  12. K. Prince, M. Ma, T. B. Gibbon, C. Neumeyr, E. Rönneberg, M. Ortsiefer, and I. T. Monroy, "Free-running 1550 nm VCSEL for 10.7 Gb/s transmission in 99.7 km PON," J. Opt. Commun. Networks 3, 399-403 (2011). https://doi.org/10.1364/JOCN.3.000399
  13. W. Hofmann, M. Ortsiefer, E. Rönneberg, C. Neumeyr, G. Böhm, and M.-C. Amann, "1.3 ${\mu}m$ InGaAlAs/InP VCSEL for 10G ethernet," in Proc. IEEE 21st International Semiconductor Laser Conference 2008 (ISLC 2008) (Sorrento, Italy, Sept. 2008), pp. 11-12.
  14. W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Böhm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M.-C. Amann, "10-Gb/s data transmission using BCB passivated 1.55-${\mu}m$ InGaAlAs -InP VCSELs," IEEE Photon. Technol. Lett. 18, 424-426 (2006). https://doi.org/10.1109/LPT.2005.863184
  15. C.-K. Lin, D. P. Bour, J. Zhu, W. H. Perez, M. H. Leary, A. Tendon, S. W. Corzine, and M. R. T. Tan, "High temperature continuous-wave operation of 1.3 and 1.55-${\mu}m$ VCSELs with InP/air-gap DBRs," IEEE J. Select. Topics Quantum Electron. 9, 1415-1421 (2003). https://doi.org/10.1109/JSTQE.2003.820924
  16. M. Ortsiefer, S. Baydar, K. Windhorn, G. Böhm, J. Rosskopf, R. Shau, E. Ronneberg, W. Hofmann, and M.-C. Amann, "2.5-mW single-mode operation of 1.55-${\mu}m$ buried tunnel junction VCSELs," IEEE Photon. Technol. Lett. 17, 1596-1598 (2005). https://doi.org/10.1109/LPT.2005.850905
  17. V. Iakovlev, G. Suruceanu, A. Caliman, A. Mereuta, A. Mircea, C.-A. Berseth, A. Syrbu, A. Rudra, and E. Kapon, "High-performance single-mode VCSELs in the 1310-nm waveband," IEEE Photon. Technol. Lett. 17, 947-949 (2005). https://doi.org/10.1109/LPT.2005.845654
  18. A. Mircea, A. Calinan, V. Iakovlev, A. Mereuta, G. Suruceanu, C.-A. Berseth, P. Royo, A. Syrbu, and E. Kapon, "Cavity mode-gain peak tradeoff for 1320-nm wafer-fused VCSELs with 3-mW single-mode emission power and 10-Gb/s modulation speed up to $70^{\circ}C$," IEEE Photon. Technol. Lett. 19, 121-123 (2007). https://doi.org/10.1109/LPT.2006.890081

Cited by

  1. Electrically-pumped plasmonic lasers based on low-loss hybrid SPP waveguide vol.23, pp.19, 2015, https://doi.org/10.1364/OE.23.024843