References
- Y. Song, J. Wang, M. Yan, and M. Qiu, "Efficient coupling between dielectric and hybrid plasmonic waveguides by multimode interference power splitter," J. Opt. 13, 75002 (2011). https://doi.org/10.1088/2040-8978/13/7/075002
- R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, "Plasmonics: the next chip-scale technology," Mater. Today 9, 20-27 (2006).
- E. Ozbay, "Plasmonics: merging photonics and electronics at nanoscale dimentions," Science 311, 189-193 (2006). https://doi.org/10.1126/science.1114849
- T. Tanemura, K. C. Balram, D. S. L. Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. B. Miller, "Multiplewavelength focusing of surface plasmons with a nonperiodic nanoslit coupler," Nano Lett. 11, 2693-2698 (2011). https://doi.org/10.1021/nl200938h
- R. H. Ritchie, "Plasma losses by fast electrons in thin films," Phys. Rev. 106, 874-881 (1957). https://doi.org/10.1103/PhysRev.106.874
- T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extra ordinary optical transmission through subwavelength hole arrays," Nature 391, 667-669 (1997).
- L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, "Planer lenses based on nanoscale slit arrays in a metallic film," Nano Lett. 9, 235-238 (2009). https://doi.org/10.1021/nl802830y
- A. Normatov, P. Ginzburg, N. Berkovitch, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, "Efficient coupling and field enhancement for the nano-scale: plasmonic needle," Opt. Express 18, 14079-14086 (2010). https://doi.org/10.1364/OE.18.014079
- W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003). https://doi.org/10.1038/nature01937
- S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nature Mat. 2, 229-232 (2003). https://doi.org/10.1038/nmat852
- S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett. 95, 046802 (2005). https://doi.org/10.1103/PhysRevLett.95.046802
- A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, "Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths," Opt. Express 16, 5252-5260 (2008). https://doi.org/10.1364/OE.16.005252
- J. C. Weeber, A. Dereux, C. Girard, J. Krenn, and J. P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light, " Phys. Rev. B 60, 9061-9068 (1999). https://doi.org/10.1103/PhysRevB.60.9061
- T. Holmgaard, S. I. Bozhevolnyi, L. Markey, and A. Dereux, "Efficient excitation of dielectric-loaded surface plasmonpolariton waveguide modes at telecommunication wavelength," Phys. Rev. B 78, 165431 (2008). https://doi.org/10.1103/PhysRevB.78.165431
- J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, "Plasmon slot waveguides: toward chip-scale propagation with subwavlength-scale localization," Phys. Rev. B 73, 035407 (2006). https://doi.org/10.1103/PhysRevB.73.035407
- J. H. Zhu, Q. J. Wang, P. Shum, and X. G. Huang, "A nanoplasmonic high-passwavelength filter based on a metalinsulator- metal circuitous waveguide," IEEE Trans. Nano Tech. 10, 1357-1361 (2011). https://doi.org/10.1109/TNANO.2011.2136385
- C. Min and G. Veronis, "Absorption switches in metaldielectric- metal plasmonic waveguides," Opt. Express 17, 10757-10766 (2009). https://doi.org/10.1364/OE.17.010757
- H. Lu, X. Liu, D. Mao, L. Wang, and Y. Gong, "Tunable band-pass plasmonic waveguide filters with nanodisk resonators," Opt. Express 18, 17922-17927 (2010). https://doi.org/10.1364/OE.18.017922
- P. Chen, R. Liang, Q. Huang, Z. Yu, and X. Xu, "Plasmonic filters and directional couplers based on wide metal-insulatormetal structure," Opt. Express 19, 7633-7639 (2011). https://doi.org/10.1364/OE.19.007633
- A. Setayesh, S. R. Mirnaziri, and M. S. Abrishamian, "Numerical investigation of tunable band-pass/band-stop plasmonic filters with hollow core circular ring resonator," J. Opt. Soc. Korea 15, 82-89 (2011). https://doi.org/10.3807/JOSK.2011.15.1.082
- H. Gao, H. Shi, C. Wang, C. Du, X. Luo, Q. Deng, Y. Lv, X. Lin, and H. Yao, "Surface plasmon polariton propagation and combination in Y-shaped metallic channels," Opt. Express 13, 10795-10800 (2005). https://doi.org/10.1364/OPEX.13.010795
- K. M. Byun, "Development of nanostructured plasmonic substrates for enhanced optical biosensing," J. Opt. Soc. Korea 14, 65-76 (2010). https://doi.org/10.3807/JOSK.2010.14.2.065
- T. W. Lee and S. K. Gray, "Subwavelength light bending by metal slit structures," Opt. Express 13, 9652-9659 (2005). https://doi.org/10.1364/OPEX.13.009652
- J. Q. Liu, L. L. Wang, M. D. He, W. Q. Huang, D. Wang, B. S. Zou, and S. Wen, "A wide bandgap plasmonic bragg reflactor," Opt. Express 16, 4888-4894 (2008). https://doi.org/10.1364/OE.16.004888
- Y. Zhao, S. C. S. Lin, A. A. Nawaz, B. Kiraly, Q. Hao, Y. Liu, and T. J. Huang, "Beam bending via plasmonic lenses," Opt. Express 18, 23458-23465 (2010). https://doi.org/10.1364/OE.18.023458
- S. Yang, W. Chen, R. L. Nelson, and Q. Zhan, "Miniature circular polarization analyzer with spiral plasmonic lens," Opt. Lett. 34, 3047-3049 (2009). https://doi.org/10.1364/OL.34.003047
- Y. Yu and H. Zappe, "Effect of lens size on the focusing performance of plasmonic lenses and suggestions for the design," Opt. Express 19, 9434-44 (2011). https://doi.org/10.1364/OE.19.009434
- F. J. G. Vidal, L. M. Moreno, H. J. Lezec, and T. W. Ebbesen, "Focusing light with a single subwavelngth aperture flanked by surface corrugations," Appl. Phys. Lett. 83, 4500-4502 (2003). https://doi.org/10.1063/1.1631384
- S. Kim, Y. Lim, H. Kim, J. Park, and B. Lee, "Optical beam focusing by a sigle subwavelength metal slit surrounded by chirped dielectric surface grating," Appl. Phys. Lett. 92, 013103 (2008). https://doi.org/10.1063/1.2828716
- Y. Fu, Y. Liu, X. Zhou, Z. Xu, and F. Fang, "Experimental investigation of superfocusing of plasmonic lens with chirped circular nanoslits," Opt. Express 18, 3438-3443 (2010). https://doi.org/10.1364/OE.18.003438
- F. M. Huang, T. S. Kao, V. A. Fedotov, and Y. Chen, "Nano hole array as a lens," Nano Lett. 8, 2469-2472 (2008). https://doi.org/10.1021/nl801476v
- L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, "Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing," Nano Lett. 10, 1936-1940 (2010). https://doi.org/10.1021/nl1009712
- H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, "Beam manipulating by metallic nano-slits with variant widths," Opt. Express 13, 6815-6820 (2005). https://doi.org/10.1364/OPEX.13.006815
- T. Xu, C. Wang, C. Du, and X. Luo, "Plasmonic beam deflector," Opt. Express 16, 4753-4759 (2008). https://doi.org/10.1364/OE.16.004753
- Z. Sun and H. K. Kim, "Refractive transmission of light and beam shaping with metallic nano-optic lenses," Appl. Phys. Lett. 85, 642-644 (2004). https://doi.org/10.1063/1.1776327
- H. Lu, X. Liu, L. Wang, Y. Gong, and D. Mao, "Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator," Opt. Express 19, 2911-2915 (2011).
- J. H. Zhu, X. G. Huang, and X. Mei, "Plasmonic electrooptical switches operating at telecom wavelengths," Plasmonics 6, 605-612 (2011). https://doi.org/10.1007/s11468-011-9241-4
- M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, "Electrooptic modulation in thin film barium titanate plasmonic interferometers," Nano Lett. 8, 4048-4052 (2008). https://doi.org/10.1021/nl802981q
- K. J. Chau, S. E. Irvine, and A. Y. Elezzabi, "A gigahertz surface magneto-plasmon optical modulator," IEEE J. Quantum Electron. 40, 571-579 (2004). https://doi.org/10.1109/JQE.2004.826422
- T. Nickolajsen, K. Leosson, and S. I. Bozhevonlyi, "In-line extinction modulator based on long- range surface plasmon polaritons," Opt. Commun. 244, 455-459 (2005). https://doi.org/10.1016/j.optcom.2004.09.045
- Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Mocrometerscale silicon electro-optic modulator," Nature Lett. 435, 325-327 (2005). https://doi.org/10.1038/nature03569
- D. Pacifici, H. J. Lezec, and H. A. Atwateri, "All-optical modulation by plasmonic excitation of CdSe quantum dots," Nature Photon. 1, 402-406 (2007). https://doi.org/10.1038/nphoton.2007.95
- J. Tao, Q. J. Wang, and X. G. Huang, "All-optical plasmonic switches based on coupled nano-disk cavity structures containing nonlinear material," Plasmonics 6, 753-759 (2011). https://doi.org/10.1007/s11468-011-9260-1
- C. Min, P. Wang, X. Jiao, Y. Deng, and H. Ming, "Beam manipulating by metallic nano-optic lens containing nonlinear media," Opt. Express 15, 9541-9546 (2007). https://doi.org/10.1364/OE.15.009541
- M. Bahramipanah, S. A. Mirtaheri, and M. S. Abrishamian, "Electrical beam steering with metal-anisotropic-metal structure," Opt. Lett. 37, 527-529 (2012). https://doi.org/10.1364/OL.37.000527
- Y. Pang, C. Genet, and T. W. Ebbesen, "Optical transmission through subwavelength slit apertures in metallic films," Opt. Commun. 280, 10-15 (2007). https://doi.org/10.1016/j.optcom.2007.07.063
- A. Toflaove and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 3rd ed. (Artech House, Boston, USA, 2005).
- J. B. Judkins and R. W. Ziolkowski, "Finit-difference time-domain modeling of nonperfectly conducting metallic thin film grating," J. Opt. Soc. Am. A 12, 1974-1983 (1995). https://doi.org/10.1364/JOSAA.12.001974
- M. J. Weber, Handbook of Optical Materials (CRC Press, Boca Raton, USA, 2003).
- G. Wang, H. Lu, X. Liu, Y. Gong, and L. Wang, "Optical bistability in metal-insulator-metalic plasmonic waveguide with nanodisk resonator containing Kerr nonlinear medium," Opt. Express 50, 5287-5290 (2011).
- S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, USA, 2007).
- M. A. Swillam, N. Rotenberg, and H. M. van Driel, "All-optical ultrafast control of beaming through a single subwavelength aperture in a metal film," Opt. Express 19, 7856-7864 (2011). https://doi.org/10.1364/OE.19.007856
- M. Mansuripur, A. R. Zakharian, A. Lesuffleur, S.-H. Oh, R. J. Jones, N. C. Lindquist, H. Im, A. Kobyakov, and J. V. Moloney, "Plasmonic nano-structures for optical data storage," Proc. SPIE 7505, 75050I (2009).
Cited by
- Directional Radiation of Surface Plasmon Polaritons at Visible Wavelengths through a Nanohole Dimer Optical Antenna Milled in a Gold Film vol.18, pp.6, 2014, https://doi.org/10.3807/JOSK.2014.18.6.799
- Polarization dependent transmission through a sub-wavelength hexagonal aperture surrounded by segmented polygonal grooves vol.21, pp.26, 2013, https://doi.org/10.1364/OE.21.032668