DOI QR코드

DOI QR Code

Active Focusing of Light in Plasmonic Lens via Kerr Effect

  • Nasari, Hadiseh (Department of Electrical and Computer Engineering, K. N. Toosi University of Technology) ;
  • Abrishamian, Mohammad Sadegh (Department of Electrical and Computer Engineering, K. N. Toosi University of Technology)
  • 투고 : 2012.05.03
  • 심사 : 2012.06.26
  • 발행 : 2012.09.25

초록

We numerically demonstrate the performance of a plasmonic lens composed of an array of nanoslits perforated on thin metallic film with slanted cuts on the output surface. Embedding Kerr nonlinear material in nanoslits is employed to modulate the output beam. A two dimensional nonlinear-dispersive finite-difference time-domain (2D N-D-FDTD) method is utilized. The performance parameters of the proposed lens such as focal length, full-width half-maximum, depth of focus and the efficiency of focusing are investigated. The structure is illuminated by a TM-polarized plane wave and a Gaussian beam. The effect of the beam waist of the Gaussian beam and the incident light intensity on the focusing effect is explored. An exact formula is proposed to derive electric field E from electric flux density D in a Kerr-Dispersive medium. Surface plasmon (SPs) modes and Fabry-Perot (F-P) resonances are used to explain the physical origin of the light focusing phenomenon. Focused ion beam milling can be implemented to fabricate the proposed lens. It can find valuable potential applications in integrated optics and for tuning purposes.

키워드

참고문헌

  1. Y. Song, J. Wang, M. Yan, and M. Qiu, "Efficient coupling between dielectric and hybrid plasmonic waveguides by multimode interference power splitter," J. Opt. 13, 75002 (2011). https://doi.org/10.1088/2040-8978/13/7/075002
  2. R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, "Plasmonics: the next chip-scale technology," Mater. Today 9, 20-27 (2006).
  3. E. Ozbay, "Plasmonics: merging photonics and electronics at nanoscale dimentions," Science 311, 189-193 (2006). https://doi.org/10.1126/science.1114849
  4. T. Tanemura, K. C. Balram, D. S. L. Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. B. Miller, "Multiplewavelength focusing of surface plasmons with a nonperiodic nanoslit coupler," Nano Lett. 11, 2693-2698 (2011). https://doi.org/10.1021/nl200938h
  5. R. H. Ritchie, "Plasma losses by fast electrons in thin films," Phys. Rev. 106, 874-881 (1957). https://doi.org/10.1103/PhysRev.106.874
  6. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extra ordinary optical transmission through subwavelength hole arrays," Nature 391, 667-669 (1997).
  7. L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, "Planer lenses based on nanoscale slit arrays in a metallic film," Nano Lett. 9, 235-238 (2009). https://doi.org/10.1021/nl802830y
  8. A. Normatov, P. Ginzburg, N. Berkovitch, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, "Efficient coupling and field enhancement for the nano-scale: plasmonic needle," Opt. Express 18, 14079-14086 (2010). https://doi.org/10.1364/OE.18.014079
  9. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003). https://doi.org/10.1038/nature01937
  10. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nature Mat. 2, 229-232 (2003). https://doi.org/10.1038/nmat852
  11. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett. 95, 046802 (2005). https://doi.org/10.1103/PhysRevLett.95.046802
  12. A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, "Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths," Opt. Express 16, 5252-5260 (2008). https://doi.org/10.1364/OE.16.005252
  13. J. C. Weeber, A. Dereux, C. Girard, J. Krenn, and J. P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light, " Phys. Rev. B 60, 9061-9068 (1999). https://doi.org/10.1103/PhysRevB.60.9061
  14. T. Holmgaard, S. I. Bozhevolnyi, L. Markey, and A. Dereux, "Efficient excitation of dielectric-loaded surface plasmonpolariton waveguide modes at telecommunication wavelength," Phys. Rev. B 78, 165431 (2008). https://doi.org/10.1103/PhysRevB.78.165431
  15. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, "Plasmon slot waveguides: toward chip-scale propagation with subwavlength-scale localization," Phys. Rev. B 73, 035407 (2006). https://doi.org/10.1103/PhysRevB.73.035407
  16. J. H. Zhu, Q. J. Wang, P. Shum, and X. G. Huang, "A nanoplasmonic high-passwavelength filter based on a metalinsulator- metal circuitous waveguide," IEEE Trans. Nano Tech. 10, 1357-1361 (2011). https://doi.org/10.1109/TNANO.2011.2136385
  17. C. Min and G. Veronis, "Absorption switches in metaldielectric- metal plasmonic waveguides," Opt. Express 17, 10757-10766 (2009). https://doi.org/10.1364/OE.17.010757
  18. H. Lu, X. Liu, D. Mao, L. Wang, and Y. Gong, "Tunable band-pass plasmonic waveguide filters with nanodisk resonators," Opt. Express 18, 17922-17927 (2010). https://doi.org/10.1364/OE.18.017922
  19. P. Chen, R. Liang, Q. Huang, Z. Yu, and X. Xu, "Plasmonic filters and directional couplers based on wide metal-insulatormetal structure," Opt. Express 19, 7633-7639 (2011). https://doi.org/10.1364/OE.19.007633
  20. A. Setayesh, S. R. Mirnaziri, and M. S. Abrishamian, "Numerical investigation of tunable band-pass/band-stop plasmonic filters with hollow core circular ring resonator," J. Opt. Soc. Korea 15, 82-89 (2011). https://doi.org/10.3807/JOSK.2011.15.1.082
  21. H. Gao, H. Shi, C. Wang, C. Du, X. Luo, Q. Deng, Y. Lv, X. Lin, and H. Yao, "Surface plasmon polariton propagation and combination in Y-shaped metallic channels," Opt. Express 13, 10795-10800 (2005). https://doi.org/10.1364/OPEX.13.010795
  22. K. M. Byun, "Development of nanostructured plasmonic substrates for enhanced optical biosensing," J. Opt. Soc. Korea 14, 65-76 (2010). https://doi.org/10.3807/JOSK.2010.14.2.065
  23. T. W. Lee and S. K. Gray, "Subwavelength light bending by metal slit structures," Opt. Express 13, 9652-9659 (2005). https://doi.org/10.1364/OPEX.13.009652
  24. J. Q. Liu, L. L. Wang, M. D. He, W. Q. Huang, D. Wang, B. S. Zou, and S. Wen, "A wide bandgap plasmonic bragg reflactor," Opt. Express 16, 4888-4894 (2008). https://doi.org/10.1364/OE.16.004888
  25. Y. Zhao, S. C. S. Lin, A. A. Nawaz, B. Kiraly, Q. Hao, Y. Liu, and T. J. Huang, "Beam bending via plasmonic lenses," Opt. Express 18, 23458-23465 (2010). https://doi.org/10.1364/OE.18.023458
  26. S. Yang, W. Chen, R. L. Nelson, and Q. Zhan, "Miniature circular polarization analyzer with spiral plasmonic lens," Opt. Lett. 34, 3047-3049 (2009). https://doi.org/10.1364/OL.34.003047
  27. Y. Yu and H. Zappe, "Effect of lens size on the focusing performance of plasmonic lenses and suggestions for the design," Opt. Express 19, 9434-44 (2011). https://doi.org/10.1364/OE.19.009434
  28. F. J. G. Vidal, L. M. Moreno, H. J. Lezec, and T. W. Ebbesen, "Focusing light with a single subwavelngth aperture flanked by surface corrugations," Appl. Phys. Lett. 83, 4500-4502 (2003). https://doi.org/10.1063/1.1631384
  29. S. Kim, Y. Lim, H. Kim, J. Park, and B. Lee, "Optical beam focusing by a sigle subwavelength metal slit surrounded by chirped dielectric surface grating," Appl. Phys. Lett. 92, 013103 (2008). https://doi.org/10.1063/1.2828716
  30. Y. Fu, Y. Liu, X. Zhou, Z. Xu, and F. Fang, "Experimental investigation of superfocusing of plasmonic lens with chirped circular nanoslits," Opt. Express 18, 3438-3443 (2010). https://doi.org/10.1364/OE.18.003438
  31. F. M. Huang, T. S. Kao, V. A. Fedotov, and Y. Chen, "Nano hole array as a lens," Nano Lett. 8, 2469-2472 (2008). https://doi.org/10.1021/nl801476v
  32. L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, "Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing," Nano Lett. 10, 1936-1940 (2010). https://doi.org/10.1021/nl1009712
  33. H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, "Beam manipulating by metallic nano-slits with variant widths," Opt. Express 13, 6815-6820 (2005). https://doi.org/10.1364/OPEX.13.006815
  34. T. Xu, C. Wang, C. Du, and X. Luo, "Plasmonic beam deflector," Opt. Express 16, 4753-4759 (2008). https://doi.org/10.1364/OE.16.004753
  35. Z. Sun and H. K. Kim, "Refractive transmission of light and beam shaping with metallic nano-optic lenses," Appl. Phys. Lett. 85, 642-644 (2004). https://doi.org/10.1063/1.1776327
  36. H. Lu, X. Liu, L. Wang, Y. Gong, and D. Mao, "Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator," Opt. Express 19, 2911-2915 (2011).
  37. J. H. Zhu, X. G. Huang, and X. Mei, "Plasmonic electrooptical switches operating at telecom wavelengths," Plasmonics 6, 605-612 (2011). https://doi.org/10.1007/s11468-011-9241-4
  38. M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, "Electrooptic modulation in thin film barium titanate plasmonic interferometers," Nano Lett. 8, 4048-4052 (2008). https://doi.org/10.1021/nl802981q
  39. K. J. Chau, S. E. Irvine, and A. Y. Elezzabi, "A gigahertz surface magneto-plasmon optical modulator," IEEE J. Quantum Electron. 40, 571-579 (2004). https://doi.org/10.1109/JQE.2004.826422
  40. T. Nickolajsen, K. Leosson, and S. I. Bozhevonlyi, "In-line extinction modulator based on long- range surface plasmon polaritons," Opt. Commun. 244, 455-459 (2005). https://doi.org/10.1016/j.optcom.2004.09.045
  41. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Mocrometerscale silicon electro-optic modulator," Nature Lett. 435, 325-327 (2005). https://doi.org/10.1038/nature03569
  42. D. Pacifici, H. J. Lezec, and H. A. Atwateri, "All-optical modulation by plasmonic excitation of CdSe quantum dots," Nature Photon. 1, 402-406 (2007). https://doi.org/10.1038/nphoton.2007.95
  43. J. Tao, Q. J. Wang, and X. G. Huang, "All-optical plasmonic switches based on coupled nano-disk cavity structures containing nonlinear material," Plasmonics 6, 753-759 (2011). https://doi.org/10.1007/s11468-011-9260-1
  44. C. Min, P. Wang, X. Jiao, Y. Deng, and H. Ming, "Beam manipulating by metallic nano-optic lens containing nonlinear media," Opt. Express 15, 9541-9546 (2007). https://doi.org/10.1364/OE.15.009541
  45. M. Bahramipanah, S. A. Mirtaheri, and M. S. Abrishamian, "Electrical beam steering with metal-anisotropic-metal structure," Opt. Lett. 37, 527-529 (2012). https://doi.org/10.1364/OL.37.000527
  46. Y. Pang, C. Genet, and T. W. Ebbesen, "Optical transmission through subwavelength slit apertures in metallic films," Opt. Commun. 280, 10-15 (2007). https://doi.org/10.1016/j.optcom.2007.07.063
  47. A. Toflaove and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 3rd ed. (Artech House, Boston, USA, 2005).
  48. J. B. Judkins and R. W. Ziolkowski, "Finit-difference time-domain modeling of nonperfectly conducting metallic thin film grating," J. Opt. Soc. Am. A 12, 1974-1983 (1995). https://doi.org/10.1364/JOSAA.12.001974
  49. M. J. Weber, Handbook of Optical Materials (CRC Press, Boca Raton, USA, 2003).
  50. G. Wang, H. Lu, X. Liu, Y. Gong, and L. Wang, "Optical bistability in metal-insulator-metalic plasmonic waveguide with nanodisk resonator containing Kerr nonlinear medium," Opt. Express 50, 5287-5290 (2011).
  51. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, USA, 2007).
  52. M. A. Swillam, N. Rotenberg, and H. M. van Driel, "All-optical ultrafast control of beaming through a single subwavelength aperture in a metal film," Opt. Express 19, 7856-7864 (2011). https://doi.org/10.1364/OE.19.007856
  53. M. Mansuripur, A. R. Zakharian, A. Lesuffleur, S.-H. Oh, R. J. Jones, N. C. Lindquist, H. Im, A. Kobyakov, and J. V. Moloney, "Plasmonic nano-structures for optical data storage," Proc. SPIE 7505, 75050I (2009).

피인용 문헌

  1. Directional Radiation of Surface Plasmon Polaritons at Visible Wavelengths through a Nanohole Dimer Optical Antenna Milled in a Gold Film vol.18, pp.6, 2014, https://doi.org/10.3807/JOSK.2014.18.6.799
  2. Polarization dependent transmission through a sub-wavelength hexagonal aperture surrounded by segmented polygonal grooves vol.21, pp.26, 2013, https://doi.org/10.1364/OE.21.032668