DOI QR코드

DOI QR Code

Correlation Between Collimation-Corrected Peak Luminosity and Spectral Lag of Gamma-ray Bursts in the Source Frame

  • Chang, Heon-Young (Department of Astronomy and Atmospheric Sciences, Kyungpook National University)
  • Received : 2012.05.17
  • Accepted : 2012.06.11
  • Published : 2012.09.15

Abstract

We revisit the relation between the peak luminosity $L_{iso}$ and the spectral time lag in the source frame. Since gamma-ray bursts (GRBs) are generally thought to be beamed, it is natural to expect that the collimation-corrected peak luminosity may well correlate with the spectral time lag in the source frame if the lag-luminosity relation in the GRB source frame exists. With 12 long GRBs detected by the Swift satellite, whose redshift and spectral lags in the source frame are known, we computed $L_{0,H}$ and $L_{0,W}$ using bulk Lorentz factors ${\Gamma}_{0,H}$ and ${\Gamma}_{0,W}$ archived in the published literature, where the subscripts H and W represent homogeneous and wind-like circumburst environments, respectively. We have confirmed that the isotropic peak luminosity correlates with the spectral time lag in the source frame. We have also confirmed that there is an anti-correlation between the source-frame spectral lag and the peak energy, $E_{peak}$ (1 + z) in the source frame. We have found that the collimation-corrected luminosity correlates in a similar way with the spectral lag, except that the correlations are somewhat less tight. The correlation in the wind density profile seems to agree with the isotropic peak luminosity case better than in the homogeneous case. Finally we conclude by briefly discussing its implications.

Keywords

References

  1. Amati L, Frontera F, Tavani M, in't Zand JJM, Antonelli A, et al., Intrinsic spectra and energetics of BeppoSAX gamma-ray bursts with known redshifts, A&A, 390, 81-89 (2002). http://dx.doi.org/10.1051/0004-6361:20020722
  2. Band DL, Gamma-ray burst spectral evolution through cross-correlations of discriminator light curves, ApJ, 486, 928-937 (1997). http://dx.doi.org/10.1086/304566
  3. Berger E, The host galaxies of short-duration gammaray bursts: luminosities, metallicities, and starformation rates, ApJ, 690, 231-237 (2009). http://dx.doi. org/10.1088/0004-637X/690/1/231
  4. Berger E, The environments of short-duration gammaray bursts and implications for their progenitors, NewAR, 55, 1-22 (2011). http://dx.doi.org/10.1016/j.newar.2010.10.001
  5. Chang H-Y, The peak energy-duration correlation and possible implications on gamma ray burst progenitor, JASS, 23, 167-176 (2006). http://dx.doi.org/10.5140/ JASS.2006.23.3.167
  6. Cheng LX, Ma YQ, Cheng KS, Lu T, Zhou YY, The time delay of gamma-ray bursts in the soft energy band, A&A, 300, 746-750 (1995).
  7. Chevalier RA, Li Z-Y, Gamma-ray burst environments and progenitors, ApJ, 520, L29-L32 (1999). http://dx.doi.org/10.1086/312147
  8. Dermer CD, On spectral and temporal variability in blazars and gamma-ray bursts, ApJ, 501, L157-L160 (1998). http://dx.doi.org/10.1086/311467
  9. Fenimore EE, in't Zand JJM, Norris JP, Bonnell JT, Nemiroff RJ, Gamma-ray burst peak duration as a function of energy, ApJ, 448, L101-L104 (1995). http://dx.doi.org/10.1086/309603
  10. Fenimore EE, Ramirez-Ruiz E, Redshifts for 220 BATSE gamma-ray bursts determined by variability and the cosmological consequences (2000). http://arxiv.org/abs/astro-ph/0004176v2
  11. Frail DA, Kulkarni SR, Berger E, Wieringa MH, A complete catalog of radio afterglows: the first five years, AJ, 125, 2299-2306 (2003). http://dx.doi.org/10.1086/374364
  12. Fruchter AS, Levan AJ, Strolger L, Vreeswijk PM, Thorsett SE, et al., Long gamma-ray bursts and core-collapse supernovae have different environments, Natur, 441, 463-468 (2006). http://dx.doi.org/10.1038/nature04787
  13. Gehrels N, Chincarini G, Giommi P, Mason KO, Nousek JA, et al., The swift gamma-ray burst mission, ApJ, 611, 1005-1020 (2004). http://dx.doi.org/10.1086/422091
  14. Gehrels N, Norris JP, Barthelmy SD, Granot J, Kaneko Y, et al., A new gamma-ray burst classification scheme from GRB060614, Natur, 444, 1044-1046 (2006). http://dx.doi. org/10.1038/nature05376
  15. Ghirlanda G, Ghisellini G, Lazzati D, The collimationcorrected GRB energies correlate with the peak energy of their v $F_{v}$ spectrum, ApJ, 616, 331-338 (2004). http:// dx.doi.org/10.1086/424913
  16. Ghirlanda G, Nava L, Ghisellini G, Celotti A, Burlon D, et al., Gamma-ray bursts in the comoving frame, MNRAS, 420, 483-494 (2012). http://dx.doi.org/10.1111/j.1365- 2966.2011.20053.x
  17. Hakkila J, Giblin TW, Norris JP, Fragile PC, Bonnell JT, Correlations between lag, luminosity, and duration in gamma-ray burst pulses, ApJ, 677, L81-L84 (2008). http://dx.doi.org/10.1086/588094
  18. Ioka K, Nakamura T, Peak luminosity-spectral lag relation caused by the viewing angle of the collimated gammaray bursts, ApJ, 554, L163-L167 (2001). http://dx.doi. org/10.1086/321717
  19. Kouveliotou C, Meegan CA, Fishman GJ, Bhat NP, Briggs MS, et al., Identification of two classes of gammaray bursts, ApJ, 413, L101-L104 (1993). http://dx.doi. org/10.1086/186969
  20. Li T-P, Qu J-L, Feng H, Song L-M, Ding G-Q, et al., Timescale analysis of spectral lags, ChJAA, 4, 583-598 (2004).
  21. Lithwick Y, Sari R, Lower limits on lorentz factors in gammaray bursts, ApJ, 555, 540-545 (2001). http://dx.doi. org/10.1086/321455
  22. Margutti R, Guidorzi C, Chincarini G, Bernardini MG, Genet F, et al., Lag-luminosity relation in gammaray burst X-ray flares: a direct link to the prompt emission, MNRAS, 406, 2149-2167 (2010). http://dx.doi. org/10.1111/j.1365-2966.2010.16824.x
  23. Nakar E, Short-hard gamma-ray bursts, PhR, 442, 166-236 (2007). http://dx.doi.org/10.1016/j.physrep.2007.02.005
  24. Nava L, Ghisellini G, Ghirlanda G, Tavecchio F, Firmani C, On the interpretation of spectral-energy correlations in long gamma-ray bursts, A&A, 450, 471-481 (2006). http://dx.doi.org/10.1051/0004-6361:20054211
  25. Norris JP, Implications of the lag-luminosity relationship for unified gamma-ray burst paradigms, ApJ, 579, 386-403 (2002). http://dx.doi.org/10.1086/342747
  26. Norris JP, Bonnell JT, Kazanas D, Scargle JD, Hakkila J, et al., Long-lag, wide-pulse gamma-ray bursts, ApJ, 627, 324- 345 (2005). http://dx.doi.org/10.1086/430294
  27. Norris JP, Marani GF, Bonnell JT, Connection between energy-dependent lags and peak luminosity in gammaray bursts, ApJ, 534, 248-257 (2000). http://dx.doi. org/10.1086/308725
  28. Panaitescu A, Kumar P, Fundamental physical parameters of collimated gamma-ray burst afterglows, ApJ, 560, L49-L53 (2001). http://dx.doi.org/10.1086/324061
  29. Press WH, Flannery BP, Teukolsky SA, Vetterling WT, Numerical recipes in FORTRAN (Cambridge University Press, Cambridge, 1992).
  30. Reichart DE, Lamb DQ, Fenimore EE, Ramirez-Ruiz E, Cline TL, et al., A possible cepheid-like luminosity estimator for the long gamma-ray bursts, ApJ, 552, 57-71 (2001). http://dx.doi.org/10.1086/320434
  31. Rhoads JE, How to tell a jet from a balloon: a proposed test for beaming in gamma-ray bursts, ApJ, 487, L1-L4 (1997). http://dx.doi.org/10.1086/310876
  32. Sari R, Piran T, Halpern JP, Jets in gamma-ray bursts, ApJ, 519, L17-L20 (1999). http://dx.doi.org/10.1086/312109
  33. Savaglio S, Glazebrook K, Le Borgne D, The galaxy population hosting gamma-ray bursts, ApJ, 691, 182-211 (2009). http://dx.doi.org/10.1088/0004-637X/691/1/182
  34. Schaefer BE, The Hubble diagram to redshift > 6 from 69 gamma-ray bursts, ApJ, 660, 16-46 (2007). http://dx.doi. org/10.1086/511742
  35. Ukwatta TN, Dhuga KS, Morris DC, MacLachlan G, Parke WC, et al., A new frequency-luminosity relation for long gamma-ray bursts?, MNRAS, 412, 875-882 (2011). http://dx.doi.org/10.1111/j.1365-2966.2010.17944.x
  36. Ukwatta TN, Dhuga KS, Stamatikos M, Dermer CD, Sakamoto T, et al., The lag-luminosity relation in the GRB source frame: an investigation with Swift BAT bursts, MNRAS, 419, 614-623 (2012). http://dx.doi.org/10.1111/j.1365-2966.2011.19723.x
  37. Ukwatta TN, Stamatikos M, Dhuga KS, Sakamoto T, Barthelmy SD, et al., Spectral lags and the lagluminosity relation: an investigation with swift BAT gamma-ray bursts, ApJ, 711, 1073-1086 (2010). http:// dx.doi.org/10.1088/0004-637X/711/2/1073
  38. Waxman E, Kulkarni SR, Frail DA, Implications of the radio afterglow from the gamma-ray burst of 1997 May 8, ApJ, 497, 288-293 (1998). http://dx.doi.org/10.1086/305467
  39. Yonetoku D, Murakami T, Nakamura T, Yamazaki R, Inoue AK, et al., Gamma-ray burst formation rate inferred from the spectral peak energy-peak luminosity relation, ApJ, 609, 935-951 (2004). http://dx.doi.org/10.1086/421285
  40. Zhang B, Zhang B-B, Virgili FJ, Liang E-W, Kann DA, et al., Discerning the physical origins of cosmological gammaray bursts based on multiple observational criteria: the cases of z = 6.7 GRB 080913, z = 8.2 GRB 090423, and some short/hard GRBs, ApJ, 703, 1696-1724 (2009). http://dx.doi.org/10.1088/0004-637X/703/2/1696

Cited by

  1. Revisiting the Correlations of Peak Luminosity with Spectral Lag and Peak Energy of the Observed Gamma-ray Bursts vol.33, pp.4, 2016, https://doi.org/10.5140/JASS.2016.33.4.247