DOI QR코드

DOI QR Code

Anti-obesity effect of resveratrol-amplified grape skin extracts on 3T3-L1 adipocytes differentiation

  • Received : 2012.04.02
  • Accepted : 2012.07.09
  • Published : 2012.08.31

Abstract

Resveratrol (3,4,5-trihydroxy-trans-stilbene), a phytoalexin found in grape skin, grape products, and peanuts as well as red wine, has been reported to have various biological and pharmacological properties. The purpose of this study was to investigate the anti-obesity effect of resveratrol-amplified grape skin extracts on adipocytes. The anti-obesity effects of grape skin extracts were investigated by measuring proliferation and differentiation in 3T3-L1 cells. The effect of grape skin ethanol extracts on cell proliferation was detected by the MTS assay. The morphological changes and degree of adipogenesis of preadipocyte 3T3-L1 cells were measured by Oil Red-O staining assay. Treatment with extracts of resveratrol-amplified grape skin decreased lipid accumulation and glycerol-3-phosphate dehydrogenase activity without affecting 3T3-L1 cell viability. Grape skin extract treatment resulted in significantly attenuated expression of key adipogenic transcription factors, including peroxisome proliferator-activated receptor, CCAAT/enhancer-binding proteins, and their target genes (FAS, aP2, SCD-1, and LPL). These results indicate that resveratrol-amplified grape skin extracts may be useful for preventing obesity by regulating lipid metabolism.

Keywords

References

  1. Szkudelska K, Szkudelski T. Resveratrol, obesity and diabetes. Eur J Pharmacol 2010;635:1-8. https://doi.org/10.1016/j.ejphar.2010.02.054
  2. Das DK, Maulik N. Resveratrol in cardioprotection: a therapeutic promise of alternative medicine. Mol Interv 2006;6:36-47. https://doi.org/10.1124/mi.6.1.7
  3. Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N, Milne J, Lambert P, Elliott P, Geny B, Laakso M, Puigserver P, Auwerx J. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1$\alpha$. Cell 2006;127:1109-1122. https://doi.org/10.1016/j.cell.2006.11.013
  4. Filip V, Plockova M, Smidrkal J, Spickova Z, Melzoch K, Schmidt S. Resveratrol and its antioxidant and antimicrobial effectiveness. Food Chem 2003;83:585-593. https://doi.org/10.1016/S0308-8146(03)00157-2
  5. Bradamante S, Barenghi L, Villa A. Cardiovascular protective effects of resveratrol. Cardiovasc Drug Rev 2004;22:169-188.
  6. Athar M, Back JH, Tang X, Kim KH, Kopelovich L, Bickers DR, Kim AL. Resveratrol: a review of preclinical studies for human cancer prevention. Toxicol Appl Pharmacol 2007;224: 274-283. https://doi.org/10.1016/j.taap.2006.12.025
  7. de la Lastra CA, Villegas I. Resveratrol as an antioxidant and pro-oxidant agent: mechanisms and clinical implications. Biochem Soc Trans 2007;35:1156-1160. https://doi.org/10.1042/BST0351156
  8. Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K, Pistell PJ, Poosala S, Becker KG, Boss O, Gwinn D, Wang M, Ramaswamy S, Fishbein KW, Spencer RG, Lakatta EG, Le Couteur D, Shaw RJ, Navas P, Puigserver P, Ingram DK, de Cabo R, Sinclair DA. Resveratrol improves health and survival of mice on a highcalorie diet. Nature 2006;444:337-342. https://doi.org/10.1038/nature05354
  9. Malterud K, Tonstad S. Preventing obesity: challenges and pitfalls for health promotion. Patient Educ Couns 2009;76:254-259. https://doi.org/10.1016/j.pec.2008.12.012
  10. Dewulf EM, Cani PD, Neyrinck AM, Possemiers S, Van Holle A, Muccioli GG, Deldicque L, Bindels LB, Pachikian BD, Sohet FM, Mignolet E, Francaux M, Larondelle Y, Delzenne NM. Inulin-type fructans with prebiotic properties counteract GPR43 overexpression and $PPAR{\gamma}$-related adipogenesis in the white adipose tissue of high-fat diet-fed mice. J Nutr Biochem 2011;22: 712-722. https://doi.org/10.1016/j.jnutbio.2010.05.009
  11. Hosogai N, Fukuhara A, Oshima K, Miyata Y, Tanaka S, Segawa K, Furukawa S, Tochino Y, Komuro R, Matsuda M, Shimomura I. Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes 2007;56:901-911. https://doi.org/10.2337/db06-0911
  12. Hao HD, He LR. Mechanisms of cardiovascular protection by resveratrol. J Med Food 2004;7:290-298. https://doi.org/10.1089/jmf.2004.7.290
  13. Leifert WR, Abeywardena MY. Cardioprotective actions of grape polyphenols. Nutr Res 2008;28:729-737. https://doi.org/10.1016/j.nutres.2008.08.007
  14. Bertelli AA, Das DK. Grapes, wines, resveratrol, and heart health. J Cardiovasc Pharmacol 2009;54:468-476. https://doi.org/10.1097/FJC.0b013e3181bfaff3
  15. Langcake P, Pryce RJ. The production of resveratrol and the viniferins by grapevines in response to ultraviolet irradiation. Phytochemistry 1977;16:1193-1196. https://doi.org/10.1016/S0031-9422(00)94358-9
  16. Cho YJ, Maeng JS, Kim CT, Pyee J. Enrichment of resveratrol content in harvested grape using modulation of cell metabolism with UV treatment. J East Asian Soc Diet Life 2011;21:739-745.
  17. Singleton VL, Rossi JA Jr. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 1965;16:144-158.
  18. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 1999;26:1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  19. Flegal KM, Carroll MD, Ogden CL, Curtin LR. Prevalence and trends in obesity among US adults, 1999-2008. JAMA 2010;303: 235-241. https://doi.org/10.1001/jama.2009.2014
  20. Lee CH, Olson P, Evans RM. Minireview: lipid metabolism, metabolic diseases, and peroxisome proliferator-activated receptors. Endocrinology 2003;144:2201-2207. https://doi.org/10.1210/en.2003-0288
  21. Harper CE, Patel BB, Wang J, Arabshahi A, Eltoum IA, Lamartiniere CA. Resveratrol suppresses prostate cancer progression in transgenic mice. Carcinogenesis 2007;28:1946-1953. https://doi.org/10.1093/carcin/bgm144
  22. Bae HS. Effect of grape skin with resveratrol amplification on lipid metabolism and antioxidative system in rats fed high cholesterol diet [master's thesis]. Gyeongsan: Yeungnam University; 2008.
  23. Wise LS, Green H. Participation of one isozyme of cytosolic glycerophosphate dehydrogenase in the adipose conversion of 3T3 cells. J Biol Chem 1979;254:273-275.
  24. Park HJ, Yang JY, Ambati S, Della-Fera MA, Hausman DB, Rayalam S, Baile CA. Combined effects of genistein, quercetin, and resveratrol in human and 3T3-L1 adipocytes. J Med Food 2008;11:773-783. https://doi.org/10.1089/jmf.2008.0077
  25. Rayalam S, Yang JY, Ambati S, Della-Fera MA, Baile CA. Resveratrol induces apoptosis and inhibits adipogenesis in 3T3-L1 adipocytes. Phytother Res 2008;22:1367-1371. https://doi.org/10.1002/ptr.2503
  26. Szatmari I, Rajnavolgyi E, Nagy L. PPARgamma, a lipidactivated transcription factor as a regulator of dendritic cell function. Ann N Y Acad Sci 2006;1088:207-218. https://doi.org/10.1196/annals.1366.013
  27. Zhang L, Chawla A. Role of $PPAR{\gamma}$ in macrophage biology and atherosclerosis. Trends Endocrinol Metab 2004;15:500-505. https://doi.org/10.1016/j.tem.2004.10.006
  28. Tontonoz P, Hu E, Spiegelman BM. Stimulation of adipogenesis in fibroblasts by $PPAR{\gamma}2$, a lipid-activated transcription factor. Cell 1994;79:1147-1156. https://doi.org/10.1016/0092-8674(94)90006-X
  29. Tang QQ, Zhang JW, Lane MD. Sequential gene promoter interactions of C/EBP$\beta$, C/EBP$\alpha$, and $PPAR{\gamma}$ during adipogenesis. Biochem Biophys Res Commun 2004;319:235-239. https://doi.org/10.1016/j.bbrc.2004.04.176
  30. Wu Z, Rosen ED, Brun R, Hauser S, Adelmant G, Troy AE, McKeon C, Darlington GJ, Spiegelman BM. Cross-regulation of C/EBP$\alpha$ and $PPAR{\gamma}$ controls the transcriptional pathway of adipogenesis and insulin sensitivity. Mol Cell 1999;3:151-158. https://doi.org/10.1016/S1097-2765(00)80306-8
  31. Yang JY, Della-Fera MA, Rayalam S, Ambati S, Hartzell DL, Park HJ, Baile CA. Enhanced inhibition of adipogenesis and induction of apoptosis in 3T3-L1 adipocytes with combinations of resveratrol and quercetin. Life Sci 2008;82:1032-1039. https://doi.org/10.1016/j.lfs.2008.03.003
  32. Floyd ZE, Wang ZQ, Kilroy G, Cefalu WT. Modulation of peroxisome proliferator-activated receptor ${\gamma}$ stability and transcriptional activity in adipocytes by resveratrol. Metabolism 2008;57: S32-S38.
  33. Miles PD, Barak Y, He W, Evans RM, Olefsky JM. Improved insulin-sensitivity in mice heterozygous for PPAR-gamma deficiency. J Clin Invest 2000;105:287-292. https://doi.org/10.1172/JCI8538
  34. Chen LL, Zhang HH, Zheng J, Hu X, Kong W, Hu D, Wang SX, Zhang P. Resveratrol attenuates high-fat diet-induced insulin resistance by influencing skeletal muscle lipid transport and subsarcolemmal mitochondrial $\beta$-oxidation. Metabolism 2011;60: 1598-1609. https://doi.org/10.1016/j.metabol.2011.04.002
  35. Fajas L, Schoonjans K, Gelman L, Kim JB, Najib J, Martin G, Fruchart JC, Briggs M, Spiegelman BM, Auwerx J. Regulation of peroxisome proliferator-activated receptor ${\gamma}$ expression by adipocyte differentiation and determination factor 1/sterol regulatory element binding protein 1: implications for adipocyte differentiation and metabolism. Mol Cell Biol 1999;19:5495-5503.
  36. Payne VA, Au WS, Lowe CE, Rahman SM, Friedman JE, O'Rahilly S, Rochford JJ. C/EBP transcription factors regulate SREBP1c gene expression during adipogenesis. Biochem J 2010; 425:215-223. https://doi.org/10.1042/BJ20091112
  37. Le Lay S, Lefrere I, Trautwein C, Dugail I, Krief S. Insulin and sterol-regulatory element-binding protein-1c (SREBP-1C) regulation of gene expression in 3T3-L1 adipocytes. Identification of CCAAT/enhancer-binding protein beta as an SREBP-1C target. J Biol Chem 2002;277:35625-35634. https://doi.org/10.1074/jbc.M203913200
  38. Gosmain Y, Dif N, Berbe V, Loizon E, Rieusset J, Vidal H, Lefai E. Regulation of SREBP-1 expression and transcriptional action on HKII and FAS genes during fasting and refeeding in rat tissues. J Lipid Res 2005;46:697-705. https://doi.org/10.1194/jlr.M400261-JLR200
  39. Bennett MK, Lopez JM, Sanchez HB, Osborne TF. Sterol regulation of fatty acid synthase promoter. Coordinate feedback regulation of two major lipid pathways. J Biol Chem 1995;270: 25578-25583. https://doi.org/10.1074/jbc.270.43.25578
  40. Kim JB, Spiegelman BM. ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes Dev 1996;10:1096-1107. https://doi.org/10.1101/gad.10.9.1096
  41. Horton JD, Shimomura I, Brown MS, Hammer RE, Goldstein JL, Shimano H. Activation of cholesterol synthesis in preference to fatty acid synthesis in liver and adipose tissue of transgenic mice overproducing sterol regulatory element-binding protein-2. J Clin Invest 1998;101:2331-2339. https://doi.org/10.1172/JCI2961
  42. Makowski L, Brittingham KC, Reynolds JM, Suttles J, Hotamisligil GS. The fatty acid-binding protein, aP2, coordinates macrophage cholesterol trafficking and inflammatory activity. Macrophage expression of aP2 impacts peroxisome proliferator-activated receptor gamma and IkappaB kinase activities. J Biol Chem 2005;280:12888-95.
  43. Makowski L, Hotamisligil GS. Fatty acid binding proteins--the evolutionary crossroads of inflammatory and metabolic responses. J Nutr 2004;134:2464S-2468S.
  44. Kong CS, Kim JA, Ahn BN, Vo TS, Yoon NY, Kim SK. 1-(3',5'-dihydroxyphenoxy)-7-(2'',4'',6-trihydroxyphenoxy)-2,4,9-t rihydroxydibenzo-1,4-dioxin inhibits adipocyte differentiation of 3T3-L1 fibroblasts. Mar Biotechnol (NY) 2010;12:299-307. https://doi.org/10.1007/s10126-009-9224-z
  45. Bullo M, Garcia-Lorda P, Peinado-Onsurbe J, Hernandez M, Del Castillo D, Argiles JM, Salas-Salvado J. TNF$\alpha$ expression of subcutaneous adipose tissue in obese and morbid obese females: relationship to adipocyte LPL activity and leptin synthesis. Int J Obes Relat Metab Disord 2002;26:652-658. https://doi.org/10.1038/sj.ijo.0801977
  46. Cohen P, Friedman JM. Leptin and the control of metabolism: role for stearoyl-CoA desaturase-1 (SCD-1). J Nutr 2004;134: 2455S-2463S.
  47. Cohen P, Miyazaki M, Socci ND, Hagge-Greenberg A, Liedtke W, Soukas AA, Sharma R, Hudgins LC, Ntambi JM, Friedman JM. Role for stearoyl-CoA desaturase-1 in leptin-mediated weight loss. Science 2002;297:240-243. https://doi.org/10.1126/science.1071527
  48. Jeong YS, Jung HK, Cho KH, Youn KS, Hong JH. Anti-obesity effect of grape skin extract in 3T3-L1 adipocytes. Food Sci Biotechnol 2011;20:635-642. https://doi.org/10.1007/s10068-011-0090-x

Cited by

  1. Resveratrol inhibits the protein expression of transcription factors related adipocyte differentiation and the activity of matrix metalloproteinase in mouse fibroblast 3T3-L1 preadipocytes vol.6, pp.6, 2012, https://doi.org/10.4162/nrp.2012.6.6.499
  2. Resveratrol Protects Against Physical Fatigue and Improves Exercise Performance in Mice vol.18, pp.4, 2013, https://doi.org/10.3390/molecules18044689
  3. Peanut sprout ethanol extract inhibits the adipocyte proliferation, differentiation, and matrix metalloproteinases activities in mouse fibroblast 3T3-L1 preadipocytes vol.7, pp.3, 2013, https://doi.org/10.4162/nrp.2013.7.3.160
  4. Effects of Yerba maté, a Plant Extract Formulation (“YGD”) and Resveratrol in 3T3-L1 Adipogenesis vol.19, pp.10, 2014, https://doi.org/10.3390/molecules191016909
  5. Blockade of visfatin induction by oleanolic acid via disturbing IL-6-TRAF6-NF-κB signaling of adipocytes vol.239, pp.3, 2014, https://doi.org/10.1177/1535370213514511
  6. Dioscin inhibits adipogenesis through the AMPK/MAPK pathway in 3T3-L1 cells and modulates fat accumulation in obese mice vol.34, pp.5, 2014, https://doi.org/10.3892/ijmm.2014.1921
  7. Nutraceuticals and regulation of adipocyte life: Premises or promises vol.40, pp.4, 2014, https://doi.org/10.1002/biof.1164
  8. (Arthropoda: Insecta) larvae ethanol extract on 3T3-L1 adipocyte differentiation vol.44, pp.1, 2014, https://doi.org/10.1111/1748-5967.12044
  9. Effects of resveratrol on gut microbiota and fat storage in a mouse model with high-fat-induced obesity vol.5, pp.6, 2014, https://doi.org/10.1039/c3fo60630a
  10. Flavonoids from Triticum aestivum inhibit adipogenesis in 3T3-L1 cells by upregulating the insig pathway vol.12, pp.2, 2015, https://doi.org/10.3892/mmr.2015.3700
  11. Ethanol Extract of Peanut Sprout Lowers Blood Triglyceride Levels, Possibly Through a Pathway Involving SREBP-1c in Rats Fed a High-Fat Diet vol.18, pp.8, 2015, https://doi.org/10.1089/jmf.2014.3370
  12. A Herbal Formula HT048, Citrus unshiu and Crataegus pinnatifida, Prevents Obesity by Inhibiting Adipogenesis and Lipogenesis in 3T3-L1 Preadipocytes and HFD-Induced Obese Rats vol.20, pp.6, 2015, https://doi.org/10.3390/molecules20069656
  13. Polyphenol Stilbenes: Molecular Mechanisms of Defence against Oxidative Stress and Aging-Related Diseases vol.2015, pp.1942-0994, 2015, https://doi.org/10.1155/2015/340520
  14. Anti-adipogenic activity of blue mussel (Mytilus edulis) extract by regulation of 3T3-L1 adipogenesis through Wnt/β-catenin signaling pathway vol.24, pp.1, 2015, https://doi.org/10.1007/s10068-015-0042-y
  15. Involvement of miR-Let7A in inflammatory response and cell survival/apoptosis regulated by resveratrol in THP-1 macrophage vol.10, pp.4, 2016, https://doi.org/10.4162/nrp.2016.10.4.377
  16. Anti-Adipogenic Effects of Ethanol Extracts Prepared from Selected Medicinal Herbs in 3T3-L1 Cells vol.21, pp.3, 2016, https://doi.org/10.3746/pnf.2016.21.3.227
  17. Antioxidant and anti-adipogenic activities of chestnut (Castanea crenata) byproducts vol.25, pp.4, 2016, https://doi.org/10.1007/s10068-016-0186-4
  18. Seeds vol.30, pp.5, 2016, https://doi.org/10.1002/ptr.5589
  19. Balancing Herbal Medicine and Functional Food for Prevention and Treatment of Cardiometabolic Diseases through Modulating Gut Microbiota vol.8, pp.1664-302X, 2017, https://doi.org/10.3389/fmicb.2017.02146
  20. Phenolic compounds as natural and multifunctional anti-obesity agents: A review pp.1549-7852, 2017, https://doi.org/10.1080/10408398.2017.1399859
  21. Cocoa and Whey Protein Differentially Affect Markers of Lipid and Glucose Metabolism and Satiety vol.19, pp.3, 2016, https://doi.org/10.1089/jmf.2015.0044
  22. An adipocentric perspective of resveratrol as a calorie restriction mimetic vol.1290, pp.1, 2012, https://doi.org/10.1111/nyas.12212
  23. Resveratrol induces brown-like adipocyte formation in white fat through activation of AMP-activated protein kinase (AMPK) α1 vol.39, pp.6, 2012, https://doi.org/10.1038/ijo.2015.23
  24. Resveratrol attenuates triglyceride accumulation associated with upregulation of Sirt1 and lipoprotein lipase in 3T3-L1 adipocytes vol.12, pp.None, 2012, https://doi.org/10.1016/j.ymgmr.2017.05.003
  25. The Role of Dietary Phytoestrogens and the Nuclear Receptor PPARγ in Adipogenesis: An in Vitro Study vol.127, pp.3, 2012, https://doi.org/10.1289/ehp3444
  26. Phenolic Compounds Inhibit 3T3-L1 Adipogenesis Depending on the Stage of Differentiation and Their Binding Affinity to PPARγ vol.24, pp.6, 2012, https://doi.org/10.3390/molecules24061045
  27. trans-Trismethoxy resveratrol decreased fat accumulation dependent on fat-6 and fat-7 in Caenorhabditis elegans vol.10, pp.8, 2012, https://doi.org/10.1039/c9fo00778d
  28. Targeting Abdominal Obesity and Its Complications with Dietary Phytoestrogens vol.12, pp.2, 2012, https://doi.org/10.3390/nu12020582
  29. Acetate stimulates lipogenesis via AMPKα signaling in rabbit adipose-derived stem cells vol.303, pp.None, 2012, https://doi.org/10.1016/j.ygcen.2021.113715
  30. Ferulic Acid Stimulates Adipocyte-Specific Secretory Proteins to Regulate Adipose Homeostasis in 3T3-L1 Adipocytes vol.26, pp.7, 2012, https://doi.org/10.3390/molecules26071984
  31. Obesity and aging: Molecular mechanisms and therapeutic approaches vol.67, pp.None, 2012, https://doi.org/10.1016/j.arr.2021.101268
  32. Vine-Shoots as Enological Additives. A Study of Acute Toxicity and Cytotoxicity vol.10, pp.6, 2012, https://doi.org/10.3390/foods10061267
  33. Polyphenols and obesity prevention: critical insights on molecular regulation, bioavailability and dose in preclinical and clinical settings vol.61, pp.11, 2012, https://doi.org/10.1080/10408398.2020.1765736
  34. The dose-dependent pteryxin-mediated molecular mechanisms in suppressing adipogenesis in vitro vol.82, pp.None, 2012, https://doi.org/10.1016/j.jff.2021.104508