Pressure Effects on the Hg-doped Heavy-fermion Superconductor $CeRhIn_5$

Hg을 도핑한 무거운 페르미온 초전도체 $CeRhIn_5$의 압력에 따른 변화

  • Seo, S. (Department of Physics, Sungkyunkwan University) ;
  • Ju, S. (Department of Physics, Sungkyunkwan University) ;
  • Bauer, E.D. (Los Alamos National Laboratory) ;
  • Thompson, J.D. (Los Alamos National Laboratory) ;
  • Park, T. (Department of Physics, Sungkyunkwan University)
  • Received : 2012.08.09
  • Accepted : 2012.08.18
  • Published : 2012.08.31

Abstract

The heavy-fermion compound $CeRhIn_5$ is a prototypical antiferromagnet where Ce 4f moments align antiferromagnetically below 3.8 K. When doped with Hg, the antiferromagnetic transition $T_N$ initially decreases, becomes flat, and increases again with further increasing Hg concentration. Here we report pressure effects on the electrical resistivity of a 0.45 % Hg-doped $CeRhIn_5$, where $T_N$ is 3.4 K and the magnetic structure is same as that of the undoped compound with Q=(1/2, 1/2, 0.298). With increasing pressure, $T_N$ is suppressed and a superconducting state emerges. The temperature dependence of the electrical resistivity near an optimal pressure shows a power-law behavior that deviates from a $T^2$ dependence, indicating presence of abundant quantum fluctuations near the optimal pressure.

Keywords

References

  1. G. R. Stewart, "Heavy-fermion systems", Rev. Mod. Phys., 56, 775-787 (1984).
  2. J. D. Thompson et al., "Superconductivity and magnetism in a new class of heavy-fermion materials", J. Magn. Magn. Mater., 226, 5-10 (2001).
  3. N. D. Mathur et al., "Magnetically mediated superconductivity in heavy fermion compounds", Nature, 394, 39-43 (1998).
  4. P. Monthoux, D. Pines and G. G. Lonzarich, "Superconductivity without phonons", Nature, 450, 1177-1183 (2007).
  5. H. Q. Yuan, F. M. Grosche, M. Deppe, C. Geibel, G. Sparn and F. Steglich, "Observation of two distinct superconducting phases in $CeCu_2Si_2$", Science, 302, 2104-2107 (2003).
  6. T. Park et al., "Isotropic quantum scattering and unconventional superconductivity", Nature, 456, 366-368 (2008).
  7. S. Nakatsuji et al., "Superconductivity and quantum criticality in the heavy-fermion system ${\beta}-YbAlB_4$", Nature Physics, 4, 603-607 (2008).
  8. L. D. Pham, Tuson Park, S. Maquilon, J. D. Thompson and Z. Fisk, "Reversible tuning of the heavy-fermion ground state in $CeCoIn_5$", Phys. Rev. Lett., 97, 056404 (2006).
  9. J. D. Thompson et al., "Magnetism and unconventional superconductivity in $Ce_nM_mIn_{3n+2m}$ heavy-fermion crystals", Physica B, 329, 446-449 (2003).
  10. P. G. Pagliuso et al., "Coexistence of magnetism and superconductivity in $CeRh_{1-x}Ir_xIn_5$", Phys. Rev. B, 64, 100503 (2001).
  11. A. Bianchi, R. Movshovich, C. Capan, P. G. Pagliuso and J. L. Sarrao, "Possible Fulde-Ferrell-Larkin-Ovchinnikov superconducting state in $CeCoIn_5$", Phys. Rev. Lett., 91, 187004 (2003).
  12. Tuson Park et al., "Hidden magnetism and quantum criticality in the heavy fermion superconductor $CeRhIn_5$", Nature, 440, 65-68, (2006).
  13. E. D. Bauer, F. Ronning, S. Maquilon, L. D. Pham, J. D. Thompson and Z. Fisk, "Occurrence of magnetism in $CeMIn_{5-x}Hg_x$ (M=Rh, Ir)", Physica B, 403, 1135-1137 (2008).
  14. C. H. Booth et al., "Local structure and site occupancy of Cd and Hg substitution in $CeTIn_5$ (T=Co, Rh, Ir)", Phys. Rev. B, 79, 144519 (2009).
  15. A. Eiling and J. S. Schilling, "Pressure and temperature dependence of electrical resistivity of Pb and Sn from 1-300 K and 0-10 GPa-use as a continuous resistive pressure monitor accurate over wide temperature range; superconductivity under pressure in Pb, Sn and In", J. Phys. F, 11, 623-639 (1981).
  16. S. Doniach, "The Kondo lattice and weak antiferromagnetism", Physica B, 91, 231 (1977).