DOI QR코드

DOI QR Code

Biophysical therapy and biostimulation in unfavorable bony circumstances: adjunctive therapies for osseointegration

  • Kim, Yong-Deok (Department of Oral and Maxillofacial Surgery, School of Dentistry, Pusan National University)
  • 투고 : 2012.04.03
  • 심사 : 2012.05.16
  • 발행 : 2012.08.30

초록

Dental implants using titanium have greatly advanced through the improvement of designs and surface treatments. Nonetheless, the anatomical limits and physiological changes of the patient are still regarded as obstacles in increasing the success rate of implants further, even with the enhancement of implant products. So there have been many efforts to overcome these limits. The intrinsic potential for bone regeneration can be stimulated through adjuvant treatments with the continuous improvement of implant properties, and this can play an important role in achieving optimum osseointegration toward peripheral bone tissue and securing ultimate long-term implant stability in standard surgical procedures. For this purpose, various chemical, biological, or biophysical measures were developed such as bone grafts, materials, pharmacological agents, growth factors, and bone formation proteins. The biophysical stimulation of bone union includes non-invasive and safe methods. In the beginning, it was developed as a method to enhance the healing of fractures, but later evolved into Pulsed Electromagnetic Field, Low-Intensity Pulsed Ultrasound, and Low-Level Laser Therapy. Their beneficial effects were confirmed in many studies. This study sought to examine bone-implant union and its latest trend as well as the biophysical stimulation method to enhance the union. In particular, this study suggested the enhancement of the function of cells and tissues under a disadvantageous bone metabolism environment through such adjunctive stimulation. This study is expected to serve as a treatment guideline for implant-bone union under unfavorable circumstances caused by systemic diseases hampering bone metabolism or the host environment.

키워드

참고문헌

  1. Esposito M, Grusovin MG, Willings M, Coulthard P, Worthington HV. The effectiveness of immediate, early, and conventional loading of dental implants: a Cochrane systematic review of randomized controlled clinical trials. Int J Oral Maxillofac Implants 2007;22:893-904.
  2. Bassett CA, Mitchell SN, Gaston SR. Pulsing electromagnetic field treatment in ununited fractures and failed arthrodeses. JAMA 1982;247:623-8.
  3. Borsalino G, Bagnacani M, Bettati E, Fornaciari F, Rocchi R, Uluhogian S, et al. Electrical stimulation of human femoral intertrochanteric osteotomies. Double-blind study. Clin Orthop Relat Res 1988;(237):256-63.
  4. Diniz P, Shomura K, Soejima K, Ito G. Effects of pulsed electromagnetic field (PEMF) stimulation on bone tissue like formation are dependent on the maturation stages of the osteoblasts. Bioelectromagnetics 2002;23:398-405.
  5. Tsai MT, Chang WH, Chang K, Hou RJ, Wu TW. Pulsed electromagnetic fields affect osteoblast proliferation and differentiation in bone tissue engineering. Bioelectromagnetics 2007;28:519-28.
  6. Selvamurugan N, Kwok S, Vasilov A, Jefcoat SC, Partridge NC. Effects of BMP-2 and pulsed electromagnetic field (PEMF) on rat primary osteoblastic cell proliferation and gene expression. J Orthop Res 2007;25:1213-20.
  7. Farndale RW, Murray JC. Pulsed electromagnetic fields promote collagen production in bone marrow fibroblasts via athermal mechanisms. Calcif Tissue Int 1985;37:178-82.
  8. Chang WH, Chen LT, Sun JS, Lin FH. Effect of pulse-burst electromagnetic field stimulation on osteoblast cell activities. Bioelectromagnetics 2004;25:457-65.
  9. Greenough CG. The effects of pulsed electromagnetic fields on blood vessel growth in the rabbit ear chamber. J Orthop Res 1992; 10:256-62.
  10. Roland D, Ferder M, Kothuru R, Faierman T, Strauch B. Effects of pulsed magnetic energy on a microsurgically transferred vessel. Plast Reconstr Surg 2000;105:1371-4.
  11. Smith TL, Wong-Gibbons D, Maultsby J. Microcirculatory effects of pulsed electromagnetic fields. J Orthop Res 2004;22:80-4.
  12. Sharrard WJ, Sutcliffe ML, Robson MJ, Maceachern AG. The treatment of fibrous non-union of fractures by pulsing electromagnetic stimulation. J Bone Joint Surg Br 1982;64:189-93.
  13. Ito H, Shirai Y. The efficacy of ununited tibial fracture treatment using pulsing electromagnetic fields: relation to biological activity on nonunion bone ends. J Nihon Med Sch 2001;68:149-53.
  14. Bose B. Outcomes after posterolateral lumbar fusion with instrumentation in patients treated with adjunctive pulsed electromagnetic field stimulation. Adv Ther 2001;18:12-20.
  15. Linovitz RJ, Pathria M, Bernhardt M, Green D, Law MD, Mcguire RA, et al. Combined magnetic fields accelerate and increase spine fusion: a double-blind, randomized, placebo controlled study. Spine (Phila Pa 1976) 2002;27:1383-9.
  16. Mackenzie D, Veninga FD. Reversal of delayed union of anterior cervical fusion treated with pulsed electromagnetic field stimulation: case report. South Med J 2004;97:519-24.
  17. Varani K, Gessi S, Merighi S, Iannotta V, Cattabriga E, Spisani S, et al. Effect of low frequency electromagnetic fields on A2A adenosine receptors in human neutrophils. Br J Pharmacol 2002; 136:57-66.
  18. Sollazzo V, Traina GC, Demattei M, Pellati A, Pezzetti F, Caruso A. Responses of human MG-63 osteosarcoma cell line and human osteoblast-like cells to pulsed electromagnetic fields. Bioelectromagnetics 1997;18:541-7.
  19. Reher P, Doan N, Bradnock B, Meghji S, Harris M. Effect of ultrasound on the production of IL-8, basic FGF and VEGF. Cytokine 1999;11:416-23.
  20. Chang K, Chang WH, Tsai MT, Shih C. Pulsed electromagnetic fields accelerate apoptotic rate in osteoclasts. Connect Tissue Res 2006;47:222-8.
  21. Chang K, Chang WH, Huang S, Huang S, Shih C. Pulsed electromagnetic fields stimulation affects osteoclast formation by modulation of osteoprotegerin, RANK ligand and macrophage colonystimulating factor. J Orthop Res 2005;23:1308-14.
  22. Shimizu T, Zerwekh JE, Videman T, Gill K, Mooney V, Holmes RE, et al. Bone ingrowth into porous calcium phosphate ceramics: influence of pulsing electromagnetic field. J Orthop Res 1988;6: 248-58.
  23. Spadaro JA, Albanese SA, Chase SE. Electromagnetic effects on bone formation at implants in the medullary canal in rabbits. J Orthop Res 1990;8:685-93.
  24. Ijiri K, Matsunaga S, Fukuyama K, Maeda S, Sakou T, Kitano M, et al. The effect of pulsing electromagnetic field on bone ingrowth into a porous coated implant. Anticancer Res 1996;16:2853-6.
  25. Matsumoto H, Ochi M, Abiko Y, Hirose Y, Kaku T, Sakaguchi K. Pulsed electromagnetic fields promote bone formation around dental implants inserted into the femur of rabbits. Clin Oral Implants Res 2000;11:354-60.
  26. Steinberg GG. Reversible osteolysis. J Arthroplasty 1995;10:556-
  27. Konrad K, Sevcic K, Foldes K, Piroska E, Molnar E. Therapy with pulsed electromagnetic fields in aseptic loosening of total hip protheses: a prospective study. Clin Rheumatol 1996;15:325-8.
  28. Kennedy WF, Roberts CG, Zuege RC, Dicus WT. Use of pulsed electromagnetic fields in treatment of loosened cemented hip prostheses. A double-blind trial. Clin Orthop Relat Res 1993;(286): 198-205.
  29. Claes L, Willie B. The enhancement of bone regeneration by ultrasound. Prog Biophys Mol Biol 2007;93:384-98.
  30. Doan N, Reher P, Meghji S, Harris M. In vitro effects of therapeutic ultrasound on cell proliferation, protein synthesis, and cytokine production by human fibroblasts, osteoblasts, and monocytes. J Oral Maxillofac Surg 1999;57:409-19.
  31. Takayama T, Suzuki N, Ikeda K, Shimada T, Suzuki A, Maeno M, et al. Low-intensity pulsed ultrasound stimulates osteogenic differentiation in ROS 17/2.8 cells. Life Sci 2007;80:965-71.
  32. Schumann D, Kujat R, Zellner J, Angele MK, Nerlich M, Mayr E, et al. Treatment of human mesenchymal stem cells with pulsed low intensity ultrasound enhances the chondrogenic phenotype in vitro. Biorheology 2006;43:431-43.
  33. Duarte LR. The stimulation of bone growth by ultrasound. Arch Orthop Trauma Surg 1983;101:153-9.
  34. Dyson M, Brookes M. Stimulation of bone repair by ultrasound. Ultrasound Med Biol 1983;Suppl 2:61-6.
  35. Yang KH, Parvizi J, Wang SJ, Lewallen DG, Kinnick RR, Greenleaf JF, et al. Exposure to low-intensity ultrasound increases aggrecan gene expression in a rat femur fracture model. J Orthop Res 1996;14:802-9.
  36. Rawool NM, Goldberg BB, Forsberg F, Winder AA, Hume E. Power Doppler assessment of vascular changes during fracture treatment with low-intensity ultrasound. J Ultrasound Med 2003; 22:145-53.
  37. Eberson CP, Hogan KA, Moore DC, Ehrlich MG. Effect of lowintensity ultrasound stimulation on consolidation of the regenerate zone in a rat model of distraction osteogenesis. J Pediatr Orthop 2003;23:46-51.
  38. Claes L, Ruter A, Mayr E. Low-intensity ultrasound enhances maturation of callus after segmental transport. Clin Orthop Relat Res 2005;(430):189-94.
  39. Sakurakichi K, Tsuchiya H, Uehara K, Yamashiro T, Tomita K, Azuma Y. Effects of timing of low-intensity pulsed ultrasound on distraction osteogenesis. J Orthop Res 2004;22:395-403.
  40. Chan CW, Qin L, Lee KM, Cheung WH, Cheng JC, Leung KS. Dose-dependent effect of low-intensity pulsed ultrasound on callus formation during rapid distraction osteogenesis. J Orthop Res 2006;24:2072-9.
  41. ter Haar G. Therapeutic applications of ultrasound. Prog Biophys Mol Biol 2007;93:111-29.
  42. Wang CJ, Chen HS, Chen CE, Yang KD. Treatment of nonunions of long bone fractures with shock waves. Clin Orthop Relat Res 2001;(387):95-101.
  43. Heckman JD, Ryaby JP, McCabe J, Frey JJ, Kilcoyne RF. Acceleration of tibial fracture-healing by non-invasive, low-intensity pulsed ultrasound. J Bone Joint Surg Am 1994;76:26-34.
  44. Welgus HG, Jeffrey JJ, Eisen AZ, Roswit WT, Stricklin GP. Human skin fibroblast collagenase: interaction with substrate and inhibitor. Coll Relat Res 1985;5:167-79.
  45. Lin FH, Lin CC, Lu CM, Liu HC, Wang CY. The effects of ultrasonic stimulation on DP-bioglass bone substitute. Med Eng Phys 1995;17:20-6.
  46. Tanzer M, Harvey E, Kay A, Morton P, Bobyn JD. Effect of noninvasive low intensity ultrasound on bone growth into porous-coated implants. J Orthop Res 1996;14:901-6.
  47. Tanzer M, Kantor S, Bobyn JD. Enhancement of bone growth into porous intramedullary implants using non-invasive low intensity ultrasound. J Orthop Res 2001;19:195-9.
  48. Sutherland JC. Biological effects of polychromatic light. Photochem Photobiol 2002;76:164-70.
  49. Karu TI, Kolyakov SF. Exact action spectra for cellular responses relevant to phototherapy. Photomed Laser Surg 2005;23:355-61.
  50. Chen AC, Arany PR, Huang YY, Tomkinson EM, Sharma SK, Kharkwal GB, et al. Low-level laser therapy activates NF-kB via generation of reactive oxygen species in mouse embryonic fibroblasts. PLoS One 2011;6:e22453.
  51. Moore P, Ridgway TD, Higbee RG, Howard EW, Lucroy MD. Effect of wavelength on low-intensity laser irradiation-stimulated cell proliferation in vitro. Lasers Surg Med 2005;36:8-12.
  52. Hawkins D, Houreld N, Abrahamse H. Low level laser therapy (LLLT) as an effective therapeutic modality for delayed wound healing. Ann N Y Acad Sci 2005;1056:486-93.
  53. Karu TI, Pyatibrat LV, Kalendo GS. Photobiological modulation of cell attachment via cytochrome c oxidase. Photochem Photobiol Sci 2004;3:211-6.
  54. Bjordal JM, Klovning A, Lopes-Martins RA, Roland PD, Joensen J, Slordal L. Overviews and systematic reviews on low back pain. Ann Intern Med 2008;148:789-90.
  55. Sobanko JF, Alster TS. Efficacy of low-level laser therapy for chronic cutaneous ulceration in humans: a review and discussion. Dermatol Surg 2008;34:991-1000.
  56. Christie A, Jamtvedt G, Dahm KT, Moe RH, Haavardsholm EA, Hagen KB. Effectiveness of nonpharmacological and nonsurgical interventions for patients with rheumatoid arthritis: an overview of systematic reviews. Phys Ther 2007;87:1697-715.
  57. Trimmer PA, Schwartz KM, Borland MK, De Taboada L, Streeter J, Oron U. Reduced axonal transport in Parkinson's disease cybrid neurites is restored by light therapy. Mol Neurodegener 2009;4:26.
  58. Ad N, Oron U. Impact of low level laser irradiation on infarct size in the rat following myocardial infarction. Int J Cardiol 2001;80:109-16.
  59. Anders JJ, Geuna S, Rochkind S. Phototherapy promotes regeneration and functional recovery of injured peripheral nerve. Neurol Res 2004;26:233-9.
  60. Pyo SJ, Song WW, Kim IR, Park BS, Kim CH, Kim SS, et al. Effects of low level laser therapy (LLLT) on pressured human osteoblasts: a histomorphologic and quantitative study. Laser Physics 2012;22:620-5.
  61. Chan AY, Bergman H. Performance verification of a prototype non-invasive intra-oral bone growth stimulator for titanium dental implants. Conf Proc IEEE Eng Med Biol Soc 2008;2008:5624-7.
  62. Buzza EP, Shibli JA, Barbeiro RH, Barbosa JR. Effects of electromagnetic field on bone healing around commercially pure titanium surface: histologic and mechanical study in rabbits. Implant Dent 2003;12:182-7.
  63. Grana DR, Marcos HJ, Kokubu GA. Pulsed electromagnetic fields as adjuvant therapy in bone healing and peri-implant bone formation: an experimental study in rats. Acta Odontol Latinoam 2008;21:77-83.
  64. Fini M, Cadossi R, Cane V, Cavani F, Giavaresi G, Krajewski A, et al. The effect of pulsed electromagnetic fields on the osteointegration of hydroxyapatite implants in cancellous bone: a morphologic and microstructural in vivo study. J Orthop Res 2002; 20:756-63.
  65. Denaro V, Cittadini A, Barnaba SA, Ruzzini L, Denaro L, Rettino A, et al. Static electromagnetic fields generated by corrosion currents inhibit human osteoblast differentiation. Spine (Phila Pa 1976) 2008;33:955-9.
  66. Akca K, Sarac E, Baysal U, Fanuscu M, Chang TL, Cehreli M. Micro-morphologic changes around biophysically-stimulated titanium implants in ovariectomized rats. Head Face Med 2007;3:28.
  67. Liu Q, Liu X, Liu B, Hu K, Zhou X, Ding Y. The effect of lowintensity pulsed ultrasound on the osseointegration of titanium dental implants. Br J Oral Maxillofac Surg 2012;50:244-50.
  68. Shiraishi R, Masaki C, Toshinaga A, Okinaga T, Nishihara T, Yamanaka N, et al. The effects of low-intensity pulsed ultrasound exposure on gingival cells. J Periodontol 2011;82:1498-503.
  69. Wijdicks CA, Virdi AS, Sena K, Sumner DR, Leven RM. Ultrasound enhances recombinant human BMP-2 induced ectopic bone formation in a rat model. Ultrasound Med Biol 2009;35:1629-37.
  70. Omasa S, Motoyoshi M, Arai Y, Ejima K, Shimizu N. Low-level laser therapy enhances the stability of orthodontic mini-implants via bone formation related to BMP-2 expression in a rat model. Photomed Laser Surg 2012;30:255-61.
  71. Berbert FL, Sivieri-Araujo G, Ramalho LT, Pereira SA, Rodrigues DB, de Araujo MS. Quantification of fibrosis and mast cells in the tissue response of endodontic sealer irradiated by low-level laser therapy. Lasers Med Sci 2011;26:741-7.
  72. Garcia-Morales JM, Tortamano-Neto P, Todescan FF, de Andrade JC Jr, Marotti J, Zezell DM. Stability of dental implants after irradiation with an 830-nm low-level laser: a double-blind randomized clinical study. Lasers Med Sci 2012;27:703-11.

피인용 문헌

  1. Evaluation of the effect of pulsed electromagnetic fields on osseointegration of immediate dental implants : a clinical study vol.5, pp.3, 2012, https://doi.org/10.1097/01.omx.0000451843.25418.e1