참고문헌
- Agresti, A. and Coull, B. A. (1998). Approximation is better than "exact" for interval estimation of binomial proportions, The American Statistician, 52, 119-126.
- Barndorff-Nielsen, O. E. and Cox, D. R. (1994). Inference and Asymptotics, Chapman and Hall, London.
- Barnett, V., Haworth, J. and Smith, T. M. F. (2001). A two-phase sampling scheme with applications to auditing or sed quis custodiet ipsos custodes?, Journal of Royal Statistical Society, Series A, 164, 407-422. https://doi.org/10.1111/1467-985X.00210
- Boese, D. H., Young, D. M. and Stamey, J. D. (2006). Confidence intervals for a binomial parameter based on binary data subject to false-positive misclassification, Computational Statistics and Data Analysis, 50, 3369-3385. https://doi.org/10.1016/j.csda.2005.08.007
- Brown, L. D., Cai, T. T. and DasGupta, A. (2001). Interval estimation for a binomial proportion, Statistical Science, 16, 101-133.
- Efron, B. and Hinkley, D. V. (1978). Assessing the accuracy of the maximum likelihood estimator: Observed versus expected Fisher information, Biometrika, 65, 457-482. https://doi.org/10.1093/biomet/65.3.457
- Geng, Z. and Asano, C. (1989). Bayesian estimation methods for categorical data with misclassifications, Communications in Statistics, Theory and Methods, 18, 2935-2954. https://doi.org/10.1080/03610928908830069
- Hildesheim, A., Mann, V., Brinton, L. A., Szklo, M., Reeves, W. C. and Rawls, W. E. (1991). Herpes simplex virus type 2: A possible interaction with human papillomavirus types 16/18 in the development of invasion cervical cancer, International Journal of Cancer, 49, 335-340. https://doi.org/10.1002/ijc.2910490304
- Lee, S.-C. (2006a). Interval estimation of binomial proportions based on weighted Polya posterior, Computational Statistics & Data Analysis, 51, 1012-1021. https://doi.org/10.1016/j.csda.2005.10.008
- Lee, S.-C. (2006b). The weighted Polya posterior confidence interval for the difference between two independent proportions, The Korean Journal of Applied Statistics, 19, 171-181. https://doi.org/10.5351/KJAS.2006.19.1.171
- Lee, S.-C. (2010). Likelihood based confidence intervals for the difference of proportions in two doubly sampled data with a common false-positive error rate, Communications of the Korean Statistical Society, 17, 679-688. https://doi.org/10.5351/CKSS.2010.17.5.679
- Lee, S.-C. (2012). The role of artificial observations in testing for the difference of proportions in misclassified binary data, The Korean Journal of Applied Statistics, 25, 513-520. https://doi.org/10.5351/KJAS.2012.25.3.513
- Lie, R. T., Heuch, I. and Irgens, L. M. (1994). Maximum likelihood estimation of proportion of congenital malformations using double registration systems, Biometrics, 50, 433-444. https://doi.org/10.2307/2533386
- Moors, J. J. A., van der Genugten, B. B. and Strijbosch, L. W. G. (2000). Repeated audit controls, Statistica Neerlandica, 54, 3-13. https://doi.org/10.1111/1467-9574.00122
- Raats, V. M. and Moors, J. J. A. (2003). Double-checking auditors: A Bayesian approach, The Statistician, 52, 351-365.
- Tenenbein, A. (1970). A double sampling scheme for estimating from binomial data with misclassifications, Journal of the American Statistical Association, 65, 1350-1361. https://doi.org/10.1080/01621459.1970.10481170
- York, J., Madigan, D., Heuch, I. and Lie, R. T. (1995). Birth defects registered by double sampling: A Bayesian approach incorporating covariates and model uncertainty, Applied Statistics, 44, 227-242. https://doi.org/10.2307/2986347