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Abstract

An Agresti-Coull type test is considered for the difference of binomial proportions in two doubly sampled

data subject to common false-positive error. The performance of the test is compared with likelihood-based

tests. The Agresti-Coull test has many desirable properties in that it can approximate the nominal signifi-

cance level well, and has comparable power performance with a computational advantage.
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1. Introduction

The test or the interval estimation for the difference of two proportions is often of prime interest in

biology, medicine and other fields of scientific research. For instance, many experiments in clinical

trials are designed to compare the difference in proportions of responses between a new treatment

and an existing treatment. The test or the interval estimation plays a key role in these statistical

problems.

Note that the Wald procedure employing the maximum likelihood estimate and its asymptotic

variance has been considered as a standard method for these statistical problems; however, the

erratic behavior of the Wald procedure has been recognized in recent literature. For example,

Agresti and Coull (1998), Brown et al. (2001) and Lee (2006a) claimed that the coverage probability

of the Wald interval for a binomial proportion is significantly smaller than the nominal level even

if the sample size is moderately large. The literature also claimed that the performance of the

Wald interval can be improved through the application of Agresti-Coull’s approach of “adding

two successes and two failures”. The strategy worked quite well for the interval estimation of

the difference between two proportions as well as the one-sample problem; see, Lee (2006b). We

examined the performance of Agresti-Coull type test for a two-sample problem with misclassified

binary data.

The misclassified binary data often occurs in clinical trials. For example, suppose that binary

observations are obtained by classifying experimental or sampling units into two mutually exclusive
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categories. Usually researcher uses an inerrant device for the classification. However, when the

cost of the precise classification is expensive, the researcher often uses an inexpensive but fallible

classifier with a supplementary inerrant classifier. The case-control study of Hildesheim et al. (1991)

examined that invasive cervical cancer can influence exposure to Herpes Simplex Virus(HSV), is

an example of the misclassified binary data. For the study, western blot procedure known to

be relatively inaccurate but inexpensive in defecting the infection of HSV was applied to about

two thousand women in case and control groups. Since the western blot procedure is fallible, it

may classify an infected woman as normal (false-negative) and vice versa (false-positive). The

observations were exposed to measurement error; in addition, the error rates as well as the true

proportion of infection in each group are unestimable. An additional data was necessary. A small

subsample from each group was further investigated by the refined western procedure, which is an

inerrant but expensive classifier. The sampling scheme employed in the case-control study of double

sampling. There are numerous examples taking the advantages of the double sampling scheme; see

Geng and Asano (1989), York et al. (1995), Moors et al. (2000), Barnett et al. (2001), Raats and

Moors (2003) and Boese et al. (2006).

Some fallible devices may have only a single type of misclassification. For example, Lie et al.

(1994) considered the case that the false-negative counts were corrected using multiple fallible

classifiers and gave the ML estimators. Moors et al. (2000) analyzed an auditing data with no

observed false-negative count. They put the corresponding error rate equal to zero a priori, and

gave one-sided confidence intervals for the population proportion. Boese et al. (2006) gave five

likelihood-based confidence intervals in the false-positive misclassification model. Recently a two-

sample problem was considered by Lee (2012). He investigated the Agresti-Coull type test for the

difference of population proportions using two doubly sampled data. In this paper, we consider the

same problem, but assume that false-positive error rates are common. Since the error rate is the

characteristic of the fallible classifier, not the characteristic of groups, it would be more realistic to

assume that the false-positive errors are common for both groups.

2. Doubly Sampling Model with Common False-Positive Error Rate

2.1. Model

In what follows, we will use the same notation of Lee (2012). That is, for each unit tested by the

inerrant device, let Ti = 1, if ith unit is recorded positive (or a success), and Ti = 0, otherwise.

Likewise, for each unit tested by the fallible device, define Fi = 1, if ith unit is classified as positive,

and Fi = 0, otherwise. Then, the proportion of positive can be written as:

p = Pr [Ti = 1 ] ,

while the false-positive error rate incurred by the fallible device are defined to be

ϕ = Pr [Fi = 1 |Ti = 0 ] .

The false-negative error is assumed to be zero in this paper. Also we assumed that the misclassifi-

cation errors are independent from sampling unit to sampling unit.

Suppose that a random sample of N units is drawn from the population of interest and a subsample

of n units is drawn from the main sample. Each unit in the subsample belongs to one of three

mutually disjoint categories {(t, f)|(0, 0), (0, 1), (1, 1)} with probabilities (1−p)(1−ϕ), (1−p)ϕ and
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p, respectively. Let ntf denote the number of units in (t, f). Note that N − n units only tested by

a fallible device. Among these N − n units, let x be the number of units tested positively and y be

the number of units tested negatively. Then, the joint likelihood of p and ϕ is

L(p, ϕ;Y) = C(Y) (1− p)n0�+y pn11(1− ϕ)n00+yϕn01πx,

where C(Y) = n!/(n00!n01!n11!)
(
N−n

x

)
, nt� = nt0 + nt1, π = Pr [Fi = 1] = p + (1 − p)ϕ and Y

represents (n00, n01, n11, x, y).

A two-sample double sampling model consists of two data sets Y1 = (n100, n101, n111, x1, y1) and

Y2 = (n200, n201, n211, x2, y2), where each Yi is sampled from L(pi, ϕi;Yi) independently. Let λ =

p1 − p2, then the joint likelihood of λ and Θ∗ = (p2, ϕ1, ϕ2) can be written as:

L(λ,Θ∗;Y1,Y2) = L(λ+ p2, ϕ1;Y1)L(p2, ϕ2;Y2). (2.1)

Model (2.1) was considered by Lee (2012). He devised an Agresti-Coull type test for λ, compared

the performance of the test with likelihood-based tests and concluded that the test is compara-

ble with other computationally expensive likelihood-based tests in terms of power property and

approximation of nominal significance level.

(2.1) is adequate for the inference of λ in general; however, once we notice that the false-positive

error rate is a characteristic of fallible device, not a characteristic of population, there are cases

in which it may be logical to assume ϕ1 = ϕ2. For instance, if the same fallible device is applied

to obtain both Y1 and Y2 as the case-control study of Hildesheim et al. (1991), then the data sets

probably have common error rate and the joint likelihood of λ and Θ = (p2, ϕ) would be

L(λ,Θ;Y1,Y2) = L(λ+ p2, ϕ;Y1)L(p2, ϕ;Y2). (2.2)

The assumption of common false-positive error rate can reduce the dimension of parameter space.

However, the reduction of dimension does not mean that model becomes more tractable. On the

contrary, the reduction requires much more computational expense. For instance, (2.2) does not

admit the closed form maximum likelihood estimators. Nonetheless, we will see that the computa-

tional expense could be compensated by the efficiency of an inferential method.

2.2. The observed information and the expected information

Taking logarithm on (2.1), and ignoring unnecessary constant terms we have

ℓ(λ,Θ) = (n10� + y1) log(1− λ− p2) + n111 log(λ+ p2) + (n20� + y2) log(1− p2) + n211 log p2

+ (n100 + n200 + y1 + y2) log(1− ϕ) + (n101 + n201) log ϕ+ x1 log π1 + x2 log π2,

where π1 = (1− λ− p2)ϕ+ (λ+ p2) and π2 = (1− p2)ϕ+ p2. The maximum likelihood estimates

are the solutions of following likelihood equations:

0 = − n10� + y1
1− λ− p2

+
n111

λ+ p2
+

(1− ϕ)x1
π1

, (2.3)

0 = − n10� + y1
1− λ− p2

+
n111

λ+ p2
− n20� + y2

1− p2
+
n211

p2
+ (1− ϕ)

(
x1
π1

+
x2
π2

)
, (2.4)

0 = −n100 + n200 + y1 + y2
1− ϕ

+
n101 + n201

ϕ
+

(1− λ− p2)x1
π1

+
(1− p2)x2

π2
. (2.5)
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In addition, given the value of λ, the last two equations, (2.4) and (2.5) form the profile likelihood

equations.

Note when nitf = 0 for some (i, t, f), the maximum likelihood estimates cannot be defined; see

Tenenbein (1970) for further details. Similarly, the profile log-likelihood does not admit a unique

maximum. A customary remedy to prevent the undefined problem is to add a small number (say

0.005) to null observed counts. See Boese et al. (2006). Thus we will add a small number when

necessary for the calculation of likelihood or profile likelihood equations.

One may use a solver of nonlinear system of equations such as “NEQNF” or “NEQNJ” of IMSL

to obtain the maximum likelihood estimates or the profile likelihood estimates. However, those

subroutines often fail to give solutions in our simulation study. Thus, it would be better to employ

the algorithm given by Lee (2010) to obtain the maximum likelihood and the profile likelihood

estimates. Let (λ̂, Θ̂) and Θ̂λ be the solutions of likelihood equations and profile likelihood equations

when λ is given, respectively.

The observed information matrix consists of minus the second-order derivatives of ℓ(λ,Θ):

Jλλ = Jλp2 =
n10� + y1
(1− p1)2

+
n111

p21
+

(1− ϕ)2x1
π2
1

, Jλϕ =
x1
π2
1

,

Jp2p2 = Jλλ +
n20� + y2
(1− p2)2

+
n211

p22
+

(1− ϕ)2x2
π2
2

, Jp2ϕ =
x1
π2
1

+
x2
π2
2

and

Jϕϕ =
n100 + n200 + y1 + y2

(1− ϕ)2
+
n101 + n201

ϕ2
+

(1− p1)
2x1

π2
1

+
(1− p2)

2x2
π2
2

,

where p1 = λ+ p2. Replacing observed counts by their expectations, we have

Iλλ = Iλp2 =
n1 + (N1 − n1)(1− ϕ)

(1− p1)
+
n1

p1
+

(1− ϕ)2(N1 − n1)

π1
, Iλϕ =

N1 − n1

π1
,

Ip2p2 = Iλλ +
n2 + (N2 − n2)(1− ϕ)

(1− p2)
+
n2

p2
+

(1− ϕ)2(N2 − n2)

π2
, Ip2ϕ =

N1 − n1

π1
+
N2 − n2

π2

and

Iϕϕ =
N1(1−p1) +N2(1−p2)

1−ϕ +
n1(1−p1) + n2(1−p2)

ϕ
+

(1−p1)2(N1−n1)

π1
+

(1−p2)2(N2−n2)

π2
.

Then the observed information for λ is obtained from

Jλλ(λ,Θ) = Jλλ − (Jλp2 , Jλϕ)

(
Jp2p2 Jp2ϕ
Ip2ϕ Jϕϕ

)−1(
Jλp2
Jλϕ

)
. (2.6)

Similarly, the expected information for λ, Iλλ(λ,Θ) can be obtained through the replacement of J

notations in (2.6) by I notations.

2.3. Likelihood-based tests

A large sample theory indicates that λ̂ is asymptotically normally distributed with mean λ and in-

verse variance Iλλ(λ,Θ). Thus, the asymptotic distribution of (λ̂−λ)2Iλλ(λ,Θ) is a χ2-distribution
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with 1 degree of freedom. However, the existence of nuisance parameter, Θ prevents us from directly

using this result. Barndorff-Nielsen and Cox (1994) suggested that Iλλ(λ,Θ) can be replaced by

Iλλ(λ, Θ̂λ), Iλλ(λ̂, Θ̂), Jλλ(λ, Θ̂λ) and Jλλ(λ̂, Θ̂). Hence, for testing H0 : λ = λ0 vs. H1 : λ ̸= λ0,

we can setup four Wald-like test statistics,

WEP =
(̂
λ− λ0

)2
Iλλ
(
λ0, Θ̂

λ0

)
, WEM =

(̂
λ− λ0

)2
Iλλ
(̂
λ, Θ̂

)
, WOP =

(̂
λ− λ0

)2
Jλλ

(
λ0, Θ̂

λ0

)
and

WOM =
(̂
λ− λ0

)2
Jλλ

(̂
λ, Θ̂

)
,

which are known to have asymptotic χ2-distribution with 1 degree of freedom.

Next four asymptotic tests are based on the score statistic obtained from (2.3)

Uλ

(
Θ̂λ0

)
= −n10� + y1

1− p̂λ0
1

+
n111

p̂λ0
1

+

(
1− ϕ̂λ0

)
x1

π̂λ0
1

,

where p̂λ0
1 = λ0 + p̂λ0

2 , π̂λ0
1 = (1 − p̂λ0

1 )ϕ̂λ0 + p̂λ0
1 , and p̂λ0

2 and ϕ̂λ0 are the solutions of the profile

likelihood equations when λ0 is given. It is also known that the asymptotic distribution of Uλ(Θ̂
λ0)

is a normal distribution with mean 0 and variance Iλλ(λ,Θ) under H0. As before, four asymptotic

tests can be setup as

SEP =
U2

λ

(
Θ̂λ0

)
Iλλ

(
λ0, Θ̂λ0

) , SEM =
U2

λ

(
Θ̂λ0

)
Iλλ

(
λ̂, Θ̂

) , SOP =
U2

λ

(
Θ̂λ0

)
Jλλ

(
λ0, Θ̂λ0

) , SOM =
U2

λ

(
Θ̂λ0

)
Jλλ

(
λ̂, Θ̂

) .
The last likelihood-based test is due to the well-known log-likelihood ratio statistic,

LR = 2
[
ℓ
(
λ̂, Θ̂

)
− ℓ
(
λ0, Θ̂

λ0

)]
.

All of these tests reject the null hypothesis at the significance level α when the observed value of test

statistic is greater than the (1− α)× 100 percentile of a χ2-distribution with 1 degree of freedom.

The Agresti-Coull test stem from WEM which is the Wald test in original sense using the maximum

likelihood estimate and its estimate of asymptotic variance. By adding artificial counts to observed

counts, and then applying the Wald procedure, we can get an Agresti-Coull test. We will add 0.5

and 1 to each count classified by an inerrant and a fallible device, respectively. That is, let WA be

the WEM using artificial observations x∗i = xi + 1, y∗i = yi + 1, n∗
i00 = ni00 + 0.5, n∗

i01 = ni01 + 0.5

and n∗
i11 = ni11 + 0.5 for i = 1, 2. We tried other values of artificial counts, but WA was good in

approximating the significance level at 5% significance test.

2.4. An example

The case-control study of Hildesheim et al. (1991) aimed to examine that invasive cervical cancer

can affect the exposure to Herpes Simplex Virus(HSV). To explore the relationship, a western blot

procedure was applied to 693 women in the case group and for 1236 women in the control group

to detect the infection of HSV. Since the western blot procedure is fallible, a sub-sample from

each group was further investigated by a refined western blot procedure, which is known to be a
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Table 2.1. Case-control data of Hildesheim et al. (absorbing false-negatives into true-positives)

Fallible device

Inerrant device Control group Case group

0 1 0 1

Subsample
0 33 11 13 3

1 na 32 na 23

701 535 318 375

Table 2.2. The observed values of test statistics and p-values for testing H0 : λ = 0 vs. H1 : λ ̸= 0 (case-control data of
Hildesheim et al.)

Test Common error No restriction Test Common error No restriction

WEP 22.41 (0.0000) 5.93 (0.0149) SEP 22.80670 (0.0000) 8.92 (0.0028)

WEM 22.00 (0.0000) 8.48 (0.0036) SEM 23.22927 (0.0000) 6.23 (0.0125)

WOP 22.25 (0.0000) 5.73 (0.0167) SOP 22.96908 (0.0000) 9.22 (0.0024)

WOM 22.33 (0.0000) 10.35 (0.0013) SOM 22.89482 (0.0000) 5.11 (0.0238)

WA 21.87 (0.0000) 7.70 (0.0055) LR 30.99226 (0.0000) 8.06 (0.0045)

relatively accurate procedure. Originally the fallible procedure is exposed to the two types of error,

but we assume the false-negative error rate is zero. The false-negative cases are absorbed into the

true-positive. The data are shown in Table 2.1.

This data was analyzed by Lee (2012). Presumably, he believed that there was no real restriction on

the parameters. However, it may be logical to assume that the false-positive error rate is common,

since the same fallible device was applied to the case and control groups. Under this assumption,

the maximum likelihood estimate of λ is −0.1307; however, without the assumption it is −0.1566.

Similarly the maximum likelihood estimate of ϕ is 0.1523, but it is 0.1633 and 0.1198 for control

and case groups, respectively. The asymptotic variances of these estimates are 0.00039 and 0.00110.

These estimates support the assumption of a common false-positive error rate. The p-value of a

significance test for error rates was 0.260. For testing H0 : λ = 0 against H1 : λ ̸= 0, the test

statistics and p-values were calculated with and without the assumption (see Table 2.2). It can be

seen that the tests under the assumption provide larger observed values and smaller p-values than

corresponding tests with no restrictions.

3. Comparison of Tests

The tests considered in this paper are based on a large sample theory. The sizes of tests would

eventually converge to the nominal level as the sample size increased. However, when the sample

size is not large, the actual sizes of tests may not approximate to the nominal level well. To see this,

under various configurations of parameter values, the sizes of tests were estimated with 1,000,000

random samples when p (= p1 = p2) = 0.1, 0.3 and 0.5. The results are shown in Table 3.1. Because

of the duality between p and q (= 1 − p), the results for large values p can be inferred from the

table. Since the false-positive error rate is not large in general, we only considered small values of

ϕ, say 0.1 or 0.2.

It can be observed that WEP,WEM,WOM, SOP and LR have a tendency to too often reject true null

hypothesis too often. In other words, they are liberal. Since a philosophy of hypothesis testing is

to control the maximum level of type I error, the liberality could be a defect of test. However, to

be fair, we will focus on the approximation itself. Nonetheless, WEM,WOM and SOP seem to be

undesirable, because the sizes of these tests are considerably larger than the nominal level when
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Table 3.1. Estimated sizes of tests for testing H0 : λ = 0 vs. H1 : λ ̸= 0 at 0.05 significance level

p ϕ
Group 1 Group 2 Size of test

N1 n1 N2 n2 WA WEP WEM WOP WOM SEP SEM SOP SOM LR

0.1

0.1

100 20

100 20 0.0413 0.0673 0.0768 0.0445 0.0731 0.0495 0.0417 0.0751 0.0449 0.0597

200 40 0.0440 0.0597 0.0785 0.0444 0.0706 0.0493 0.0432 0.0665 0.0452 0.0580

300 60 0.0446 0.0576 0.0802 0.0465 0.0696 0.0497 0.0443 0.0636 0.0455 0.0566

200 40
200 40 0.0475 0.0571 0.0621 0.0462 0.0589 0.0502 0.0463 0.0602 0.0481 0.0554

300 60 0.0477 0.0546 0.0591 0.0466 0.0561 0.0497 0.0460 0.0572 0.0478 0.0537

0.2

100 20

100 20 0.0420 0.0652 0.0832 0.0367 0.0866 0.0482 0.0392 0.0947 0.0417 0.0649

200 40 0.0451 0.0607 0.0933 0.0419 0.0890 0.0492 0.0428 0.0784 0.0435 0.0614

300 60 0.0467 0.0597 0.1031 0.0464 0.0923 0.0496 0.0445 0.0710 0.0445 0.0600

200 40
200 40 0.0495 0.0590 0.0671 0.0423 0.0657 0.0499 0.0443 0.0669 0.0454 0.0582

300 60 0.0497 0.0569 0.0640 0.0445 0.0615 0.0498 0.0449 0.0616 0.0457 0.0562

0.3

0.1

100 20

100 20 0.0484 0.0516 0.0536 0.0497 0.0527 0.0504 0.0483 0.0523 0.0492 0.0518

200 40 0.0488 0.0510 0.0535 0.0497 0.0530 0.0503 0.0481 0.0519 0.0486 0.0509

300 60 0.0490 0.0507 0.0537 0.0496 0.0532 0.0502 0.0474 0.0514 0.0478 0.0507

200 40
200 40 0.0491 0.0508 0.0518 0.0499 0.0515 0.0504 0.0493 0.0513 0.0496 0.0508

300 60 0.0494 0.0506 0.0516 0.0499 0.0514 0.0502 0.0494 0.0511 0.0496 0.0507

0.2

100 20

100 20 0.0497 0.0536 0.0561 0.0513 0.0547 0.0511 0.0483 0.0533 0.0495 0.0524

200 40 0.0494 0.0514 0.0542 0.0499 0.0533 0.0501 0.0472 0.0515 0.0480 0.0520

300 60 0.0498 0.0514 0.0549 0.0503 0.0540 0.0503 0.0466 0.0514 0.0475 0.0513

200 40
200 40 0.0498 0.0515 0.0526 0.0504 0.0521 0.0505 0.0493 0.0515 0.0498 0.0514

300 60 0.0499 0.0512 0.0523 0.0504 0.0519 0.0505 0.0493 0.0512 0.0496 0.0511

0.5

0.1

100 20

100 20 0.0481 0.0524 0.0535 0.0510 0.0535 0.0524 0.0510 0.0537 0.0511 0.0531

200 40 0.0487 0.0511 0.0526 0.0499 0.0526 0.0511 0.0489 0.0516 0.0490 0.0507

300 60 0.0491 0.0506 0.0527 0.0497 0.0526 0.0505 0.0481 0.0510 0.0483 0.0513

200 40
200 40 0.0488 0.0500 0.0504 0.0495 0.0503 0.0499 0.0495 0.0504 0.0496 0.0506

300 60 0.0493 0.0505 0.0512 0.0500 0.0511 0.0504 0.0498 0.0510 0.0499 0.0505

0.2

100 20

100 20 0.0477 0.0516 0.0523 0.0495 0.0519 0.0510 0.0502 0.0529 0.0507 0.0515

200 40 0.0480 0.0505 0.0517 0.0490 0.0516 0.0501 0.0487 0.0515 0.0490 0.0510

300 60 0.0490 0.0508 0.0528 0.0497 0.0526 0.0506 0.0486 0.0517 0.0487 0.0506

200 40
200 40 0.0488 0.0507 0.0510 0.0497 0.0509 0.0504 0.0501 0.0515 0.0503 0.0510

300 60 0.0490 0.0506 0.0510 0.0497 0.0509 0.0504 0.0500 0.0512 0.0501 0.0504

the sample size is small. The approximation of the other tests seems to be acceptable in that the

maximum difference is less than 0.01.

WEM is too liberal when p is small; however, WA is moderately conservative and has better approx-

imations than WEM. Thus, we may conclude that WEM can be improved by adding small artificial

counts to the observed counts. The sizes of WA are quite close to the nominal level and comparable

to other tests in the approximation.

Note that Efron and Hinkley (1978) claimed that the observed information is preferable form than

the expected information in general. This may be true for the Wald-like tests. WOP and WOM

which are scaled by the observed information have slightly better approximations than WEP and

WEM, respectively. However, it may not be true for the score based tests. SEP seems to be best

among all likelihood-based tests in the approximation. Thus, we cannot conclude the preference

between the observed information and the expected information. However, we may conclude that

the information using the profile estimates is more suitable than the likelihood estimates for the

testing problem.

The size of LR is larger than those of WA,WOP, SEP, SEM and SOM for almost all cases examined in

our study. It seems that LR is too liberal, and we may exclude it from our consideration. However,

we could not identify the preference among those tests, since none of these tests is uniformly better

than other tests in the approximation, and their power properties are very similar (see Figure 3.1).

We investigated the power of tests under various parameter values, and found that the tests have
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Figure 3.1. Power of WA,WOP, SEP, SEM, SOP and LR for testing H0 : λ = 0 against H1 : λ ̸= 0 when N1 = N2 =

100, n1 = n2 = 20 (left) and N1 = N2 = 200, n1 = n2 = 40 (right) with p = 0.1, ϕ1 = 0.1 (top) and p = 0.3, ϕ2 = 0.2

(bottom).

similar powers if we take account of the actual size of the tests. Thus, we conclude that the tests

are equally good for the testing problem.

The performance of WEM is not good, but it has a computational advantage compared with other

likelihood-based tests in that they do not require solving the profile likelihood equations that are

more difficult to solve than likelihood equations. WA can enjoy this advantage as well, because

WA has a computational advantage, and is comparable to other likelihood-based tests in view of

approximation and power. These may justify the Agresti-Coull type test using artificial observa-

tions; subsequently, we can conclude that WA is a preferable test to test the difference of the two

proportions in two doubly sampled data that is subject to a common false-positive error.

4. Conclusion

The assumption of common error rates can simplify the model by reducing the number of nuisance

parameters; however, it does not make a statistical problem more tractable. Rather, the assumption

requires more computational expense. However, in the nature of double sampling design for binary

data, it customarily happens that the error rates should be the same in two doubly sampled data.

Researchers often do not notice this, and apply a standard method suitable to the model with no

restriction on parameters. For instance, the error rates incurred by a fallible device should be the

same in the case-control study of Hildesheim et al. (1991), but we believe Lee (2012) analyzed the

data improperly in that the power of the tests employed is unsatisfying.

To demonstrate this, we estimate the power of Agresti-Coull type test under both the common error
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Figure 4.1. Power of WA under the common error rate and the no restriction models for testing H0 : λ = 0 against H1 : λ ̸= 0

when p = 0.3, ϕ = 0.2, N1 = N2 = 100, n1 = n2 = 20 (left) and p = 0.3, ϕ = 0.2, N1 = N2 = 200, n1 = n2 = 40

(right). Capital and small letters represent the common error and the no restriction models, respectively.

rate and no restriction models when the nuisance parameters are p2 = 0.3 and ϕ1 = ϕ2 = 0.2. We

consider two cases of sample size, N1 = N2 = 100, n1 = n2 = 20 and N1 = N2 = 200, n1 = n2 = 40.

The results are shown in Figure 4.1. The power of WA under the assumption of common error rate

is represented by a solid line. It can be observed that the power of Agresti-Coull test designed for a

general purpose (i.e., no restriction on parameters), is significantly lower than that of WA suitable

to common error rate model. Since the Agresti-Coull type test and other likelihood-based tests

have similar power pattern, we may apply this observation to other tests as well.
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