DOI QR코드

DOI QR Code

Insecticidal Activity and Stability by Freeze-drying of Entomopathogenic Bacteria, Photorhabdus temperata M1021

동결건조에 따른 살충성 세균 Photorhabdus temperata M1021의 안정성과 살충성 평가

  • Park, Gun-Seok (School of Applied Bioscience, Kyungpook National University) ;
  • Jang, Eun-Kyung (School of Applied Bioscience, Kyungpook National University) ;
  • Kim, Min-Sung (School of Applied Bioscience, Kyungpook National University) ;
  • Shin, Jae-Ho (School of Applied Bioscience, Kyungpook National University)
  • Received : 2012.01.12
  • Accepted : 2012.04.30
  • Published : 2012.06.30

Abstract

In order to develop eco-friendly biopesticide, an entomopathogenic bacterium Photorhabdus temperata M1021 has been lyophilized via freeze-drying along with protective agents such as skim milk, starch, sodium alginate, glucose and sodium glutamate to protect cells from lysis. Freeze-drying powder of P. temperata M1021 containing 7% skim milk (w/v) showed highest survival rate of 63% among all the protective agents used in trials. Furthermore, the freeze-dried microbial powder showed 75% of survival rate after stored at $4^{\circ}C$ for 4 weeks at air contact conditions. Injection toxicity of the freeze-dried sample was tested against larvae of Galleria mellonella. A dose of $2.0{\times}10^1$ cells of P. temperata M1021 killed 100% of the G. mellonella larvae within 4 days after injection. Moreover, $2.0{\times}10^0$ cells caused 50% mortality within the 4 days after injection. Freeze-dried P. temperata M1021 strains exhibited effective insecticidal activity and could be a better candidate for being used as a biopesticide.

오늘날 환경친화적인 생물농약을 개발하기 위한 미생물로는 Bacillus thuringiensis 이외에 Photorhabdus, Xenorhabdus 및 Serratia와 같은 곤충병원성 미생물과 Pseudomonas와 같은 식물유용 미생물에 대한 연구가 활발히 진행되고 있다. 본 연구에서는 곤충병원성 미생물인 Photorhabdus temperata M1021 균주를 동결건조법을 이용하여 제제화 하였으며, 동결건조 시 세포보호를 위하여 skim milk, starch, sodium alginate, glucose와 sodium glutamate를 농도별로 첨가하여 동결 건조 후의 세포 생존율을 확인하였다. 그 결과 7% (w/v)의 skim milk가 첨가된 시료에서 가장 높은 63%의 생존율을 나타내었다. 제제화된 동결 건조균을 공기와 접촉시키면서 저온에서 생존율을 측정한 결과 4주 후에도 75% 이상의 생존율을 나타내었다. 또한 제제를 이용한 살충력 시험에서 꿀벌 부채명나방 유충에 대한 주사독성은 $2.0{\times}10^1$ cells/lavar 이상을 주사할 경우 4일 이내에 전체유충이 사멸하는 것으로 나타났으며, $2.0{\times}10^0$ cells/larva의 아주 낮은 농도에서도 50% 이상의 유충사멸 효과를 확인하였다. 본 연구에서 사용된 P. temperata M1021 균주의 동결건조 분말의 뛰어난 살충효과는 보다 현실적인 생물학적 제제로의 개발가능성을 제시하고 있다.

Keywords

References

  1. Baehler E, Bottiglieri M, Pechy-Tarr M, Maurhofer M, and Keel C (2005) Use of green fluorescent protein-based reporters to monitor balanced production of antifungal compounds in the biocontrol agent Pseudomonas fluorescens CHA0. J Appl Microbiol 99, 24-38. https://doi.org/10.1111/j.1365-2672.2005.02597.x
  2. Bashan Y, Hernandez J-P, Leyva L, and Bacilio M (2002) Alginate microbeads as inoculant carriers for plant growth-promoting bacteria. Biol Fertil Soils 35, 359-68. https://doi.org/10.1007/s00374-002-0481-5
  3. Blackburn MB, Domek JM, Gelman DB, and Hu JS (2005) The broadly insecticidal Photorhabdus luminescens toxin complex a (Tca): Activity against the Colorado potato beetle, Leptinotarsa decemlineata, and sweet potato whitefly, Bemisia tabaci. J Insect Sci 5, 32. https://doi.org/10.1093/jis/5.1.32
  4. Bozolu TF, Ozilgen M, and Bakir U (1987) Survival kinetics of lactic acid starter cultures during and after freeze drying. Enzym Microbial Technol 9, 531-7. https://doi.org/10.1016/0141-0229(87)90082-2
  5. Brugirard-Ricaud K, Duchaud E, Givaudan A, Girard PA, Kunst F, Boemare N et al. (2005) Site-specific antiphagocytic function of the Photorhabdus luminescens type III secretion system during insect colonization. Cell Microbiol 7, 363-71. https://doi.org/10.1111/j.1462-5822.2004.00466.x
  6. Daborn PJ, Waterfield N, Silva CP, Au CPY, Sharma S, and ffrench-Constant RH (2002) A single Photorhabdus gene, makes caterpillars floppy (mcf), allows Escherichia coli to persist within and kill insects. Proceed Natl Acad Sci 99, 10742-7. https://doi.org/10.1073/pnas.102068099
  7. Dong Woon L, Ho Yul C, Ok Jin S, Jae Su Y, and Young Sub K (2002) Damage of perennial ryegrass Latium perenne by Chestnut Brown Chafer, Adoretus tenuimaculatus (Coleoptera: Scarabaeidae) and biological control with Korean isolate of entomopathogenic nematodes. Korean J Appl Entomol 41, 217-23.
  8. Ehlers R-U (2001) Mass production of entomopathogenic nematodes for plant protection. Appl Microbiol Biotechnol 56, 623-33. https://doi.org/10.1007/s002530100711
  9. ffrench-Constant R and Bowent D (1999) Photorhabdus toxins: Novel biological insecticides. Curr Opin Microbiol 2, 284-8. https://doi.org/10.1016/S1369-5274(99)80049-6
  10. Ji D and Kim Y (2004) An entomopathogenic bacterium, Xenorhabdus nematophila, inhibits the expression of an antibacterial peptide, cecropin, of the beet armyworm, Spodoptera exigua. J Ins Physiol 50, 489-96. https://doi.org/10.1016/j.jinsphys.2004.03.005
  11. Kaya HK, Aguillera MM, Alumai A, Choo HY, de la Torre M, Fodor A et al. (2006) Status of entomopathogenic nematodes and their symbiotic bacteria from selected countries or regions of the world. Biol Control 38, 134-55. https://doi.org/10.1016/j.biocontrol.2005.11.004
  12. Kaya HK and Gaugler R (1993) Entomopathogenic Nematodes. Ann Rev Entomology 38, 181-206. https://doi.org/10.1146/annurev.en.38.010193.001145
  13. Kuwata R, Yoshiga T, Yoshida M, and Kondo E (2008) Mutualistic association of Photorhabdus asymbiotica with Japanese heterorhabditid entomopathogenic nematodes. Microb Infect 10, 734-41. https://doi.org/10.1016/j.micinf.2008.03.010
  14. Pechy-Tarr M, Bruck DJ, Maurhofer M, Fischer E, Vogne C, Henkels MD et al. (2008) Molecular analysis of a novel gene cluster encoding an insect toxin in plant-associated strains of Pseudomonas fluorescens. Environl Microbiol 10, 2368-86. https://doi.org/10.1111/j.1462-2920.2008.01662.x
  15. Power B, Liu X, Germaine KJ, Ryan D, Brazil D, and Dowling DN (2011) Alginate beads as a storage, delivery and containment system for genetically modified PCB degrader and PCB biosensor derivatives of Pseudomonas fluorescens F113. J Appl Microbiol 110, 1351-8. https://doi.org/10.1111/j.1365-2672.2011.04993.x
  16. Rajagopal R, Mohan S, and Bhatnagar RK (2006) Direct infection of Spodoptera litura by Photorhabdus luminescens encapsulated in alginate beads. J Invertebrate Pathol 93, 50-3. https://doi.org/10.1016/j.jip.2006.05.005
  17. Tao XQ, Lu GN, Liu JP, Li T, and Yang LN (2009) Rapid degradation of phenanthrene by using Sphingomonas sp. GY2B immobilized in calcium alginate gel beads. Int J Environ Res Public Health 6, 2470-80. https://doi.org/10.3390/ijerph6092470
  18. Theunissen JJ, Stolz E, and Michel MF (1993) The effects of medium and rate of freezing on the survival of chlamydias after lyophilization. J Appl Bacteriol 75, 473-7. https://doi.org/10.1111/j.1365-2672.1993.tb02804.x
  19. Wang L, Li XF, Zhang J, Zhao JZ, Wu QJ, Xu B et al. (2007) Monitoring of resistance for the diamondback moth to Bacillus thuringiensis Cry1Ac and Cry1Ba toxins and a Bt commercial formulation. J Appl Entomol 131, 441-6. https://doi.org/10.1111/j.1439-0418.2007.01187.x
  20. Wolfe J and Bryant G (1999) Freezing, drying, and/or vitrification of membrane- solute-water systems. Cryobiology 39, 103-29. https://doi.org/10.1006/cryo.1999.2195
  21. Zhao G and Zhang G (2005) Effect of protective agents, freezing temperature, rehydration media on viability of malolactic bacteria subjected to freezedrying. J Appl Microbiol 99, 333-8. https://doi.org/10.1111/j.1365-2672.2005.02587.x
  22. Zhao J-Z, Cao J, Li Y, Collins HL, Roush RT, and Earle ED (2003) Transgenic plants expressing two Bacillus thuringiensis toxins delay insect resistance evolution. Nat Biotechnol 21, 1493-7. https://doi.org/10.1038/nbt907

Cited by

  1. 동결건조 보호제와 기질이 동결건조된 Bacillus sp. SH1RP8의 생존율에 미치는 영향 vol.43, pp.4, 2012, https://doi.org/10.4014/mbl.1507.07007
  2. 곤충병원성 선충에서 분리한 공생세균의 안정화 및 항진균활성 vol.30, pp.3, 2015, https://doi.org/10.7841/ksbbj.2015.30.3.132