DOI QR코드

DOI QR Code

Decreased of Patient Dose by Built-in Filter in Pelvis A-P Projection

골반촬영 시 내장된 필터를 이용한 환자선량 감소

  • 신성규 (동아대학교병원 영상의학과)
  • Received : 2012.06.14
  • Accepted : 2012.07.24
  • Published : 2012.08.28

Abstract

This study was performed to find a method to decrease the radiation exposure of patients when obtaining anteroposterior pelvic images maintaining the quality of the image by using the copper filter built in the DR equipment now being used in our hospital. We measured the level of radiation by changing the filters from none filter to 0.1mmCu, 0.2mmCu, and 0.3mmCu and detected the organ level of radiation by PCXMC program. As a result, high levels of radiation were detected in the bladders and testicles and the levels were decreased as the thickness of the filter was increased and the amount of decrease was the highest in 0.1mmCu. And we asked for the expert opinions to 3 radiologists and as a result, only images obtained by 0.1mmCu filter out of all the images on which copper filters were used were accepted as the ones with diagnostic value same as none filter. At this time, the incident dose on the pelvic region was 0.895mGy which was smaller than the one in none filter by 47%. Therefore, using 0.1mmCu when obtaining anteroposterior pelvic images can effectively decrease the radiation exposure of patients.

본 연구는 본원에서 사용 중인 DR 장비에 내장되어 있는 구리필터를 이용하여 골반전후방향 촬영 시 영상의 화질을 저하시키지 않으면서 환자의 피폭선량을 줄이고자 실시하였다. 동일 조사선량으로 none filter, 0.1mmCu, 0.2mmCu, 0.3mmCu로 변화시켜 선량을 측정하고 PCXMC 프로그램으로 장기선량을 산출하였다. 결과는 고환과 방광에서 높은 선량이 검출 되었으며 필터 두께가 증가할수록 선량이 감소하였고 감소폭은 0.1mmCu 일 때 가장 크게 나타났다. 또한 촬영된 영상을 3명의 영상의학과 전문의에게 의뢰하여 평가해 본 결과 0.1mmCu를 사용한 영상이 none filter시와 가장 동일한 진단적 가치가 있는 영상으로 평가 되었고 이때 골반부 입사표면선량은 0.895mGy로 none filter 대비 47%의 선량을 줄일 수 있었다. 따라서 골반전후방향 촬영 시 0.1mmCu를 사용하여 촬영하면 환자의 피폭선량을 효과적으로 감소시킬 수 있을 것이다.

Keywords

References

  1. 윤철호, 황상용, "방사선이 일반보건에 미치는 영향에 관한 고찰", 최신의학, 제27권, 제4호, pp.113-127, 1984.
  2. 추성실, "방사선종사자들의 피폭관리와 대책", 대한방사선사협회지, 제14권, 제1호, pp.21-23, 1981.
  3. G Compagnone, "Comparison of radiation doses to patients undergoing standard radiographic examinations with conventional screen-film radiography, computed radiography and direct digital radiography," British journal of Radiology, Vol.79, pp.899-904, 2006. https://doi.org/10.1259/bjr/57138583
  4. 조광호, "디지털 방사선의학에서의 조사선량 설정과 인지에 대한 실태", 대한방사선기술학회지, 제31권, 제1호, pp.177-182, 2008.
  5. 이인자, "흉부 디지털 방사선 촬영 시 C-D phantom을 이용한 촬영조건에 따른 영상 평가", 대한방사선기술학회지, 제32권, 제1호, pp.25-32, 2009.
  6. 박 일, "일반 방사선 촬영 시 영상획득 장치에 따른 방사선량 비교", 대한방사선방어학회, pp.132-133, 2011.
  7. 식품의약품안전청, "복부, 골반, 요추, 영상의학 검사에서의 환자선량 권고량 가이드라인", 2011.
  8. 방사선보건관리학 교제편찬위원회, 방사선보건관리학, 청구문화사, 2009.
  9. 한재복, 최남길, 성호진, "입사 표면 선량 계산에 따른 진단용 X-선 촬영시 피폭선량 비교연구",한국콘텐츠학회논문지. 제11권, 제12호, 2011
  10. 김흥태, "흉부팬텀 CR영상의 화질평가 및 피폭 선량 경감에 관한 연구", 디지털영상학회지, 제4 권, 제1호, pp.72-79, 1998.
  11. 김재덕, "ROC(receiver operating characteristic) 해석", 대한구강악안면방사선학회지, 제30권, 제3호, pp.155-158, 2000.
  12. 허 준, "각종 X선 흡수체에 관한 실험", 대한방사선기술학회지, 제9권, 제1호, pp.125-129, 1986.
  13. ICRP Publication 103, Recommendations of theICRP. Annals of the ICRP. Pergamon Press, Oxford. 2007.
  14. 독일연방방사선방위청, 방사선검시 및 핵의학검사에 적용되는 진단참고준위 공시, 2003.
  15. HPA, Dose to Patients from Radiographic and Fluoroscopic X-ray imaging Procedures in the UK-2005, Review, 2007.
  16. 사단법인 일본방사선기사회 의료피폭가이드라인위원회, 의료피폭의 가이드라인, 2000.
  17. ICRP Publication 60, Recommendations of the ICRP. Annals of the ICRP. Pergamon Press, Oxford, 1990.
  18. 이초희, 임창선, "머리부 전후방향촬영 시 방사선피폭선량 저감을 위한 부가여과판에 대한 연구", 한국산학기술학회 논문지, 제12권, 제7호, pp.3117-3122, 2011. https://doi.org/10.5762/KAIS.2011.12.7.3117
  19. Tapiovaara M, Lakkisto M, Servomaa A, A PC-based Monte Carlo program for calculating patient doses in medical X-ray examinations. STUK-A 139, Helsinki Finland, Program version 1.5, 2001.

Cited by

  1. Evaluation on Organ Dose and Image Quality by Changing kVp and Ion Chamber Combination while Taking Digital Chest Lateral Decubitus PA Projection vol.15, pp.1, 2015, https://doi.org/10.5392/JKCA.2015.15.01.316