DOI QR코드

DOI QR Code

Synthesis and characterization of LiMn1.5Ni0.5O4 powders using polymerization complex method

착체중합법을 이용한 LiMn1.5Ni0.5O4 분말합성 및 특성평가

  • 신재호 (한국세라믹기술원 이천분원) ;
  • 김진호 (한국세라믹기술원 이천분원) ;
  • 황해진 (인하대학교세라믹공학과) ;
  • 김응수 (한국세라믹기술원 이천분원) ;
  • 조우석 (한국세라믹기술원 이천분원)
  • Received : 2012.07.11
  • Accepted : 2012.08.03
  • Published : 2012.08.31

Abstract

The $LiMn_{1.5}Ni_{0.5}O_4$, substituting a part of Mn with Ni in the $LiMn_2O_4$, the spinel structure has good charge-discharge cycle stability and high discharge capacity at 4.7 V. In this study $LiMn_{1.5}Ni_{0.5}O_4$ powders were synthesized by polymerization complex method. The effect on the characteristics of synthesized $LiMn_{1.5}Ni_{0.5}O_4$ powders was studied with citric acid (CA) : metal ion (ME) molar ratio (5 : 1, 10 : 1, 15 : 1, 30 : 1) and calcination temperature ($500{\sim}900^{\circ}C$). Single phase of $LiMn_{1.5}Ni_{0.5}O_4$ was observed from XRD analysis on the powders calcined at low ($500^{\circ}C$) and high temperatures ($900^{\circ}C$). The crystalline size and crystallinity increased with calcination temperature. At low calcination temperature the particle size decreased and specific surface area increased as the CA molar ratio increased. On the other hand, high particle growth rate at high calcination temperature interfered the particle size reduction and specific surface area increase induced by the increase of CA molar ratio.

스피넬 구조로 이루어진 $LiMn_2O_4$에서 Mn의 일부분을 Ni로 치환한 $LiMn_{1.5}Ni_{0.5}O_4$은 4.7 V 전압 영역에서 높은 방전 용량 및 우수한 충 방전 사이클 특성을 가진다. 본 연구에서는 착체중합법을 이용하여 $LiMn_{1.5}Ni_{0.5}O_4$를 합성하였다. Citric acid : metal의 몰비(5 : 1, 10 : 1, 15 : 1, 30 : 1) 및 하소 온도($500{\sim}900^{\circ}C$) 변화에 따라 합성된 $LiMn_{1.5}Ni_{0.5}O_4$ 분말의 특성을 조사하였다. 합성된 분말의 XRD 분석을 통해 저온($500^{\circ}C$) 및 고온($900^{\circ}C$) 영역에서 모두 단일상인 $LiMn_{1.5}Ni_{0.5}O_4$ 결정상을 관찰할 수 있었고, 하소 온도가 증가함에 따라 결정화 및 결정자 크기도 함께 증가하였다. 합성된 $LiMn_{1.5}Ni_{0.5}O_4$ 분말의 형상 및 비표면적 분석 결과, 저온영역에서는 CA 몰비가 증가할수록 입자사이즈는 감소하고 비표면적은 증가하는 것을 확인할 수 있었다. 반면에 고온영역에서는 온도 증가에 따른 입자 성장에너지가 CA 몰비 증가에 따른 입자 사이즈 감소 및 비표면적 증가 효과를 감소시키는 것을 관찰하였다.

Keywords

References

  1. R.J. Gummow, A. de Kock and M.M. Thackeray, "Improved capacity retention in rechargeable 4 V lithium manganese oxide (spinel) cells", Solid State Ionics 69 (1994) 59. https://doi.org/10.1016/0167-2738(94)90450-2
  2. M. Lanz, C. Kormann, H. Steininger, G. Heil, O. Haas and P. Novak, "Large-agglomerate-size lithium manganese oxide spinel with high rate capability for lithiumion batteries", J. Eletrochem. Soc. 147 (2000) 3997. https://doi.org/10.1149/1.1394009
  3. J.R. Dahn, U. von Sacken and C.A. Michel, "Structure and electrochemistry of $Li_{1{\pm}y}NiO_{2}$ and a new $Li_{2}NiO_{2}$ phase with the $Ni(OH)_{2}$ structure," Solid State Ionics 44 (1990) 87. https://doi.org/10.1016/0167-2738(90)90049-W
  4. H.M. Wu, J.P. Tu, Y.F. Yuan, Y. Li, X.B. Zhao and G.S. Cao, "Electrochemical and ex situ XRD studies of a $LiMn_{1.5}Ni_{0.5}O_{4}$ high-voltage cathode material", Electrochimica Acta 50 (2005) 4104. https://doi.org/10.1016/j.electacta.2005.01.026
  5. X. Wu and S.B. Kim, "Improvement of electrochemical properties of $LiMn_{1.5}Ni_{0.5}O_{4}$ spinel", J. Power Sources 109 (2002) 53. https://doi.org/10.1016/S0378-7753(02)00034-4
  6. G.T.K. Fey, C.Z. Lu and T.P. Kumar, "Preparation and electrochemical properties of high-voltage cathode materials, $LiM_{y}Ni_{0.5y}Mn_{1.5}O_{4}$ (M 1/4 Fe, Cu, Al, Mg; y 1/4 0:0-0.4)", J. Power Sources 115 (2003) 332. https://doi.org/10.1016/S0378-7753(03)00010-7
  7. L. Hernan, J. Morales, L. Sanchez and J. Santos, "Use of Li-M-Mn-O [M=Co, Cr, Ti] spinels prepared by a sol-gel method as cathodes in high-voltage lithium batteries", Solid State Ionics 118 (1999) 179. https://doi.org/10.1016/S0167-2738(98)00449-4
  8. Q. Zhong, A. Bonakdarpour, M. Zhang, Y. Gao and J.R. Dahn, "Synthesis and electrochemistry of $LiNiMn_{2-x}O_{4}$", J. Eletrochem. Soc. 144 (1997) 205. https://doi.org/10.1149/1.1837386
  9. K. Amine, H. Tukamoto, H. Yasuda and Y. Fujita, "Preparation and electrochemical investigation of $LiMn_{2-x}Me_{2-x}O_{4}$(Me: Ni, Fe, and x = 0.5, 1) cathode materials for secondary lithium batteries", J. Power Sources 68 (1997) 604. https://doi.org/10.1016/S0378-7753(96)02590-6
  10. H.U. Kim, S.D. Youn, J.C. Lee, H.R. Park, C.G. Park and M.Y. Song, "Electrochemical properties of $LiNi_{1-y}In_{y}O_{2}$ synthesized by milling and solid-state reaction method", Trans. of the Korean Hydrogen and New Energy Society 17 (2006) 117.
  11. S.M. Kim, S.H. Kim, J.H. Kim, U.S. Kim, H.J. Hwang and W.S. Cho, "Synthesis and electrochemical properties of $LiFePO_{4}$ by citrate process", Trans. of the Korean Hydrogen and New Energy Society 22 (2011) 728.
  12. S. Yang, P.Y. Zavalij and M.S. Whittiugham, "Hydrothermal synthesis of lithium iron phosphate cathodes", Electrochem. Commun. 3 (2001) 505. https://doi.org/10.1016/S1388-2481(01)00200-4
  13. M.A.E. Sanchez, G.E.S. Brito, M.C.A. Fantini, G.F. Goya and J.R. Matos, "Synthesis and characterization of $LiFePO_{4}$ prepared by sol-gel technique", Solid State Ionics 177 (2006) 497. https://doi.org/10.1016/j.ssi.2005.11.018
  14. M.P. Pechini, United States Patent, 3, 330, 676, July (1967).
  15. A. Hitoshi, N. Koji, O. Nobuo and O. Takashi, "Effect of particle morphology on electrochemical property of $LiMn_{2}O_{4}$", J. Ceram. Soc. (Japan) 109 (2001) 506. https://doi.org/10.2109/jcersj.109.1270_506
  16. H. Huang, C.H. Chen, R.C. Perego, E.M. Kelder, L. Chen and J. Schoonman, "Electrochemical characterization of commercial lithium manganese oxide powders", Solid State Ionics 127 (2000) 31. https://doi.org/10.1016/S0167-2738(99)00057-0
  17. E. Bulut, "Effect of calcination temperature on synthesis of $LiMn_{2}O_{4}$ cathod active nanoparticles for rechargeable Li-Ion batteries", Adv. Sci. Engin. Med. 3 (2011) 67. https://doi.org/10.1166/asem.2011.1072
  18. Y. Xia, N. Kumada and M. Yoshio, "Enhancing the elevated temperature performance of Li/$LiMn_{2}O_{4}$ cells by reducing $LiMn_{2}O_{4}$ surface area", J. Power Sources 90 (2000) 135. https://doi.org/10.1016/S0378-7753(00)00395-5

Cited by

  1. Powder by Precipitation and Polymerized Complex Methods vol.51, pp.3, 2014, https://doi.org/10.4191/kcers.2014.51.3.156