DOI QR코드

DOI QR Code

Biochemical characterization of ferredoxin-NADP+ reductase interaction with flavodoxin in Pseudomonas putida

  • Yeom, Jin-Ki (Department of Environmental Science and Ecological Engineering, Korea University) ;
  • Park, Woo-Jun (Department of Environmental Science and Ecological Engineering, Korea University)
  • Received : 2012.03.23
  • Accepted : 2012.05.21
  • Published : 2012.08.31

Abstract

Flavodoxin (Fld) has been demonstrated to bind to ferredoxin-NADP$^+$ reductase A (FprA) in Pseudomonas putida. Two residues ($Phe^{256}$, $Lys^{259}$) of FprA are likely to be important for interacting with Fld based on homology modeling. Site-directed mutagenesis and pH-dependent enzyme kinetics were performed to further examine the role of these residues. The catalytic efficiencies of FprA-$Ala^{259}$ and FprA-$Asp^{259}$ proteins were two-fold lower than those of the wild-type FprA. Homology modeling also strongly suggested that these two residues are important for electron transfer. Thermodynamic properties such as entropy, enthalpy, and heat capacity changes of FprA-$Ala^{259}$ and FprA-$Asp^{259}$ were examined by isothermal titration calorimetry. We demonstrated, for the first time, that $Phe^{256}$ and $Lys^{259}$ are critical residues for the interaction between FprA and Fld. Van der Waals interactions and hydrogen bonding were also more important than ionic interactions for forming the FprA-Fld complex.

Keywords

References

  1. Ceccarelli, E. A., Arakaki, A. K., Cortez, N. and Carrillo, N. (2004) Functional plasticity and catalytic efficiency in plant and bacterial ferredoxin-NADP(H) reductases. Biochim. Biophys. Acta. 1698, 155-165. https://doi.org/10.1016/j.bbapap.2003.12.005
  2. Sancho, J. (2006) Flavodoxins: sequence, folding, binding, function and beyond. Cell Mol. Life Sci. 63, 855-864. https://doi.org/10.1007/s00018-005-5514-4
  3. Kurisu, G., Kusunoki, M., Katoh, E., Yamazaki, T. and Teshima, K. (2001) Structure of the electron transfer complex between ferredoxin and ferredoxin-NADP(+) reductase. Nat. Struct. Biol. 8, 117-121. https://doi.org/10.1038/84097
  4. Sridhar-Prasad, G., Kresge, N., Muhlberg, A. B., Shaw, A., Jung, Y. S. and Burgess, B. K. (1998) The crystal structure of NADPH: ferredoxin reductase from Azotobacter vinelandii. Protein Sci. 7, 2541-2549. https://doi.org/10.1002/pro.5560071207
  5. Martinez-Julvez, M., Medina, M. and Gomez-Moreno, C. (1999) Ferredoxin-NADP(+) reductase uses the same site for the interaction with ferredoxin and flavodoxin. J. Biol. Inorg. Chem. 4, 568-578. https://doi.org/10.1007/s007750050379
  6. Lee, Y., Peña-Llopis, S., Kang, Y. S., Shin, H. D., Demple, B., Madsen, E. L., Jeon, C. O. and Park, W. (2006) Expression analysis of the fpr (ferredoxin-NADP+ reductase) gene in Pseudomonas putida KT2440. Biochem. Biophys. Res. Commum. 339, 1246-1254. https://doi.org/10.1016/j.bbrc.2005.11.135
  7. Lee, Y., Yeom, J., Kang, Y. S., Kim, J., Sung, J. S., Jeon, C. O. and Park, W. (2007) Molecular characterization of fprB (ferredoxin- NADP+ reductase) in Pseudomonas putida KT2440. J. Microbiol. Biotechnol. 17, 1504-1512.
  8. Birch, O. M., Hewitson, K. S., Fuhrmann, M., Burgdorf, K., Baldwin, J.E., Roach, P.L. and Shaw, N. M. (2000) MioC is an FMN-binding protein that is essential for Escherichia coli biotin synthase activity in vitro. J. Biol. Chem. 275, 32277-32280. https://doi.org/10.1074/jbc.M004497200
  9. Hu, Y., Li, Y., Zhang, X., Guo, X., Xia, B. and Jin, C. (2006) Solution structures and backbone dynamics of a flavodoxin MioC from Escherichia coli in both Apo- and Holo-forms: implications for cofactor binding and electron transfer. J. Biol. Chem. 281, 35454-35466. https://doi.org/10.1074/jbc.M607336200
  10. Yeom, J., Jeon, C. O., Madsen, E. L. and Park, W. (2009) In vitro and in vivo interactions of ferredoxin-$NADP^{+}$ reductases in Pseudomonas putida. J. Biochem. 145, 481-491. https://doi.org/10.1093/jb/mvn185
  11. Jung, Y.S., Roberts, V. A., Stout, C. D. and Burgess, B. K. (1999) Complex formation between Azotobacter vinelandii ferredoxin I and its physiological electron donor NADPH-ferredoxin reductase. J. Biol. Chem. 274, 2978- 2987. https://doi.org/10.1074/jbc.274.5.2978
  12. Riaz, M., Rashid, M. H., Sawyer, L., Akhtar, S., Javed, M. R., Nadeem, H. and Wear, M. (2012) Physiochemical properties and kinetics of glucoamylase produced from deoxy- D-glucose resistant mutant of Aspergillus niger for soluble starch hydrolysis. Food Chem. 130, 24-30. https://doi.org/10.1016/j.foodchem.2011.06.037
  13. Fischer, F., Raimondi, D., Aliverti, A. and Zanetti, G. (2002) Mycobacterium tuberculosis FprA, a novel bacterial NADPH-ferredoxin reductase. Eur. J. Biochem. 269, 3005-3013. https://doi.org/10.1046/j.1432-1033.2002.02989.x
  14. Kurisu, G., Kusunoki, M., Katoh, E., Yamazaki, T. and Teshima, K. (2001) Structure of the electron transfer complex between ferredoxin and ferredoxin-NADP(+) reductase. Nat. Struct. Biol. 8, 117-121. https://doi.org/10.1038/84097
  15. Jelesarov, I. and Bosshard, H. R. (1994) Thermodynamics of ferredoxin binding to ferredoxin: $NADP^{+}$ reductase and the role of water at the complex interface. Biochemistry 33, 13321-13328. https://doi.org/10.1021/bi00249a019
  16. Aoki, M., Ishimori, K., Fukada, H., Takahashi, K. and Morishima, I. (1998) Isothermal titration calorimetric studies on the associations of putidaredoxin to NADH-putidaredoxin reductase and P450cam. Biochim. Biophys. Acta. 1384, 180-188. https://doi.org/10.1016/S0167-4838(98)00017-X
  17. Martínez-Júlvez, M., Medina, M. and Velázquez-Campoy, A. (2009) Binding thermodynamics of ferredoxin: $NADP^{+}$ reductase: two different protein substrates and one energetic. Biophys. J. 96, 4966-4975. https://doi.org/10.1016/j.bpj.2009.02.061
  18. Hellerman, L. and Coffey, D. S. (1967) Studies on crystalline D-amino acid oxidase. V. Characterization of borohydride-reduced enzyme-substrate intermediate. Synthesis of epsilon- N-(1-carboxyethyl)-L-lysine. J. Biol. Chem. 242, 582-589.
  19. Ho, S. N., Hunt, H. D., Horton, R. M., Pullen, J. K. and Pease, L.R. (1989) Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77, 51-59. https://doi.org/10.1016/0378-1119(89)90358-2
  20. Asghari, S. M., Khageh, K., Dalfard, A. B., Pazhang, M. and Karbalaei-Heidari, H. R. (2011) Temperature, organic solvent and pH stabil: zation of the neutral protease from saling vibrio nrotedyticus: significance of the strutural calcium. BMB Rep. 44, 665-668. https://doi.org/10.5483/BMBRep.2011.44.10.665
  21. Zhang, R., Cui, Y., Zhang, X., Yang, Z., Zhao, Y., Song, Y., Wu, C. and Zhang, J. (2010) Soluble expression, purtication and the role of C-terminal glycine residues in scorpion toxin BmK AGP-SYPU2. BMB Rep. 43, 801-806. https://doi.org/10.5483/BMBRep.2010.43.12.801

Cited by

  1. Multiple native flavin reductases in camphor-metabolizing Pseudomonas putida NCIMB 10007: functional interaction with two-component diketocamphane monooxygenase isoenzymes vol.160, pp.Pt_8, 2014, https://doi.org/10.1099/mic.0.079913-0
  2. Flavodoxin overexpression confers tolerance to oxidative stress in beneficial soil bacteria and improves survival in the presence of the herbicides paraquat and atrazine vol.115, pp.1, 2013, https://doi.org/10.1111/jam.12224
  3. A Long-Chain Flavodoxin Protects Pseudomonas aeruginosa from Oxidative Stress and Host Bacterial Clearance vol.10, pp.2, 2014, https://doi.org/10.1371/journal.pgen.1004163
  4. Flavin-Dependent Redox Transfers by the Two-Component Diketocamphane Monooxygenases of Camphor-Grown Pseudomonas putida NCIMB 10007 vol.4, pp.4, 2016, https://doi.org/10.3390/microorganisms4040038
  5. The FinR-regulated essential gene fprA, encoding ferredoxin NADP+ reductase: Roles in superoxide-mediated stress protection and virulence of Pseudomonas aeruginosa vol.12, pp.2, 2017, https://doi.org/10.1371/journal.pone.0172071