References
- R. P. Agarwal, S. R. Grace, and D. O'Regan, Oscillation Theory for Second Order Linear, Half-Linear, Superlinear and Sublinear Dynamic Equations, Kluwer Academic, Dordrecht, 2002.
- E. F. Beckenbach and R. Bellman, Inequalities, Springer, Berlin, 1961.
- G. J. Butler, Oscillation theorems for a nonlinear analogue of Hill's equation, Quart. J. Math. Oxford Ser. (2) 27 (1976), no. 106, 159-171. https://doi.org/10.1093/qmath/27.2.159
- G. J. Butler, Integral averages and the oscillation of second order ordinary differential equations, SIAM J. Math. Anal. 11 (1980), no. 1, 190-200. https://doi.org/10.1137/0511017
- D. Cakmak and A. Tiryaki, Oscillation criteria for certain forced second order nonlinear differential equations with delayed argument, Comput. Math. Appl. 49 (2005), no. 11-12, 1647-1653. https://doi.org/10.1016/j.camwa.2005.02.005
- C. V. Coffman and J. S. W. Wong, Oscillation and nonoscillation of solutions of generalized Emden-Fowler equations, Trans. Amer. Math. Soc. 167 (1972), 399-434. https://doi.org/10.1090/S0002-9947-1972-0296413-9
- E. M. Elabbasy and T. S. Hassan, Interval oscillation for second order sublinear differ- ential equations with a damping term, Int. J. Dyn. Syst. Differ. Equ. 1 (2008), no. 4, 291-299.
- E. M. Elabbasy, T. S. Hassan, and S. H. Saker, Oscillation of second-order nonlinear differential equations with a damping term, Electron. J. Differential Equations 2005 (2005), No. 76, 13 pp.
- M. A. El-Sayed, An oscillation criterion for a forced second order linear differential equation, Proc. Amer. Math. Soc. 118 (1993), no. 3, 813-817.
- L. Erbe, T. S. Hassan, and A. Peterson, Oscillation of second order neutral delay differential equations, Adv. Dyn. Syst. Appl. 3 (2008), no. 1, 53-71.
- A. F. Guvenilir and A. Zafer, Second order oscillation of forced functional differential equations with oscillatory potentials, Comput. Math. Appl. 51 (2006), no. 9-10, 1395-1404. https://doi.org/10.1016/j.camwa.2006.02.002
- G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities, Second ed., Cambridge University Press, Cambridge, 1988.
- T. S. Hassan, Interval oscillation for second order nonlinear differential equations with a damping term, Serdica Math. J. 34 (2008), no. 4, 715-732.
- T. S. Hassan, L. Erbe, and A. Peterson, Forced oscillation of second order functional differential equations with mixed nonlinearities, Acta Mathematica Scientia 31B (2011), no. 2, 613-626.
- T. S. Hassan and Q. Kong, Interval criteria for forced oscillation of differential equations with p-Laplacian, damping, and mixed nonlinearities, Dynamic Systems & Applications 20 (2011), 279-294.
- A. G. Kartsatos, On the maintenance of oscillations of nth order equations under the effect of a small forcing term, J. Differential Equations 10 (1971), 355-363. https://doi.org/10.1016/0022-0396(71)90058-1
- A. G. Kartsatos, Maintenance of oscillations under the effect of a periodic forcing term, Proc. Amer. Math. Soc. 33 (1972), 377-383. https://doi.org/10.1090/S0002-9939-1972-0330622-0
- M. S. Keener, On the solutions of certain linear nonhomogeneous second-order differ- ential equations, Applicable Anal. 1 (1971), no. 1, 57-63. https://doi.org/10.1080/00036817108839006
- Q. Kong, Interval criteria for oscillation of second-order linear ordinary differential equations, J. Math. Anal. Appl. 229 (1999), no. 1, 258-270. https://doi.org/10.1006/jmaa.1998.6159
- Q. Kong, Oscillation criteria for second order half-linear differential equations, Differential equations with applications to biology (Halifax, NS, 1997), 317-323, Fields Inst. Commun., 21, Amer. Math. Soc., Providence, RI, 1999.
- Q. Kong and J. S. W. Wong, Oscillation of a forced second order differential equations with a deviating argument, Funct. Differ. Equ. 17 (2010), no. 1-2, 141-155.
- Q. Kong and B. G. Zhang, Oscillation of a forced second order nonlinear equation, Chinese Ann. Math. Ser. B 15 (1994), no. 1, 59-68.
- M. K. Kwong and J. S. W. Wong, Linearization of second order nonlinear oscillation theorems, Trans. Amer. Math. Soc. 279 (1983), no. 2, 705-722. https://doi.org/10.1090/S0002-9947-1983-0709578-6
- A. H. Nasr, Sufficient conditions for the oscillation of forced super-linear second order differential equations with oscillatory potential, Proc. Amer. Math. Soc. 126 (1998), no. 1, 123-125. https://doi.org/10.1090/S0002-9939-98-04354-8
- C. H. Ou and J. S. W. Wong, Forced oscillation of nth-order functional differential equations, J. Math. Anal. Appl. 262 (2001), no. 2, 722-731. https://doi.org/10.1006/jmaa.2001.7614
- Ch. G. Philos, Oscillation theorems for linear differential equations of second order, Arch. Math. (Basel) 53 (1989), no. 5, 482-492. https://doi.org/10.1007/BF01324723
- S. M. Rankin, Oscillation theorems for second order nonhomogeneous linear differential equations, J. Math. Anal. Appl. 53 (1976), no. 3, 550-553. https://doi.org/10.1016/0022-247X(76)90091-3
- A. Skidmore and J. J. Bowers, Oscillatory behavior of solutions of y′' + p(x)y = f(x), J. Math. Anal. Appl. 49 (1975), 317-323. https://doi.org/10.1016/0022-247X(75)90183-3
- A. Skidmore and W. Leighton, On the differential equation y"+p(x)y = f(x), J. Math. Anal. Appl. 43 (1973), 46-55. https://doi.org/10.1016/0022-247X(73)90256-4
- Y. G. Sun, A note on Nasr's and Wong's papers, J. Math. Anal. Appl. 286 (2003), no. 1, 363-367. https://doi.org/10.1016/S0022-247X(03)00460-8
- Y. G. Sun and Q. Kong, Interval criteria for forced oscillation with nonlinearities given by Riemann-Stieltjes integrals, Comput. Math. Appl. 62 (2011), no. 1, 243-252. https://doi.org/10.1016/j.camwa.2011.04.072
- Y. G. Sun and F. W. Meng, Interval criteria for oscillation of second order differential equations with mixed nonlinearities, Appl. Math. Comp. 198 (2008), no. 1, 375-381. https://doi.org/10.1016/j.amc.2007.08.042
- Y. G. Sun, C. H. Ou, and J. S. W. Wong, Interval oscillation theorems for a linear second-order differential equation, Comput. Math. Appl. 48 (2004), no. 10-11, 1693-1699. https://doi.org/10.1016/j.camwa.2003.08.012
- Y. G. Sun and J. S. W. Wong, Note on forced oscillation of nth-order sublinear differ- ential equations, J. Math. Anal. Appl. 298 (2004), no. 1, 114-119. https://doi.org/10.1016/j.jmaa.2004.03.076
- Y. G. Sun and J. S. W. Wong, Oscillation criteria for second order forced ordinary differential equations with mixed nonlinearities, J. Math. Anal. Appl. 334 (2007), no. 1, 549-560. https://doi.org/10.1016/j.jmaa.2006.07.109
- H. Teufel, Forced second order nonlinear oscillations, J. Math. Anal. Appl. 40 (1972), 148-152. https://doi.org/10.1016/0022-247X(72)90037-6
- J. S. W. Wong, Second order nonlinear forced oscillations, SIAM J. Math. Anal. 19 (1988), no. 3, 667-675. https://doi.org/10.1137/0519047
- J. S. W. Wong, Oscillation criteria for a forced second-order linear differential equation, J. Math. Anal. Appl. 231 (1999), no. 1, 235-240. https://doi.org/10.1006/jmaa.1998.6259
- Q. Yang, Interval oscillation criteria for a forced second order nonlinear ordinary differential equations with oscillatory potential, Appl. Math. Comput. 136 (2003), no. 1, 49-64.
Cited by
- Oscillation of impulsive functional differential equations with oscillatory potentials and Riemann-Stieltjes integrals vol.2012, pp.1, 2012, https://doi.org/10.1186/1687-1847-2012-175
- Oscillation Criteria for Functional Nonlinear Dynamic Equations with $${\gamma}$$ γ -Laplacian, Damping and Nonlinearities Given by Riemann–Stieltjes Integrals vol.13, pp.3, 2016, https://doi.org/10.1007/s00009-015-0553-z
- Comparison criteria for odd order forced nonlinear functional neutral dynamic equations vol.251, 2015, https://doi.org/10.1016/j.amc.2014.11.095
- Oscillation criteria for higher order nonlinear dynamic equations vol.287, pp.14-15, 2014, https://doi.org/10.1002/mana.201300157
- Comparison criteria for third order functional dynamic equations with mixed nonlinearities vol.268, 2015, https://doi.org/10.1016/j.amc.2015.06.046