DOI QR코드

DOI QR Code

INTERVAL CRITERIA FOR FORCED OSCILLATION OF DIFFERENTIAL EQUATIONS WITH p-LAPLACIAN AND NONLINEARITIES GIVEN BY RIEMANN-STIELTJES INTEGRALS

  • Hassan, Taher S. (Department of Mathematics Faculty of Science Mansoura University) ;
  • Kong, Qingkai (Department of Mathematics Northern Illinois University)
  • Received : 2011.03.30
  • Published : 2012.09.01

Abstract

We consider forced second order differential equation with $p$-Laplacian and nonlinearities given by a Riemann-Stieltjes integrals in the form of $$(p(t){\phi}_{\gamma}(x^{\prime}(t)))^{\prime}+q_0(t){\phi}_{\gamma}(x(t))+{\int}^b_0q(t,s){\phi}_{{\alpha}(s)}(x(t))d{\zeta}(s)=e(t)$$, where ${\phi}_{\alpha}(u):={\mid}u{\mid}^{\alpha}\;sgn\;u$, ${\gamma}$, $b{\in}(0,{\infty})$, ${\alpha}{\in}C[0,b)$ is strictly increasing such that $0{\leq}{\alpha}(0)<{\gamma}<{\alpha}(b-)$, $p$, $q_0$, $e{\in}C([t_0,{\infty}),{\mathbb{R}})$ with $p(t)>0$ on $[t_0,{\infty})$, $q{\in}C([0,{\infty}){\times}[0,b))$, and ${\zeta}:[0,b){\rightarrow}{\mathbb{R}}$ is nondecreasing. Interval oscillation criteria of the El-Sayed type and the Kong type are obtained. These criteria are further extended to equations with deviating arguments. As special cases, our work generalizes, unifies, and improves many existing results in the literature.

Keywords

References

  1. R. P. Agarwal, S. R. Grace, and D. O'Regan, Oscillation Theory for Second Order Linear, Half-Linear, Superlinear and Sublinear Dynamic Equations, Kluwer Academic, Dordrecht, 2002.
  2. E. F. Beckenbach and R. Bellman, Inequalities, Springer, Berlin, 1961.
  3. G. J. Butler, Oscillation theorems for a nonlinear analogue of Hill's equation, Quart. J. Math. Oxford Ser. (2) 27 (1976), no. 106, 159-171. https://doi.org/10.1093/qmath/27.2.159
  4. G. J. Butler, Integral averages and the oscillation of second order ordinary differential equations, SIAM J. Math. Anal. 11 (1980), no. 1, 190-200. https://doi.org/10.1137/0511017
  5. D. Cakmak and A. Tiryaki, Oscillation criteria for certain forced second order nonlinear differential equations with delayed argument, Comput. Math. Appl. 49 (2005), no. 11-12, 1647-1653. https://doi.org/10.1016/j.camwa.2005.02.005
  6. C. V. Coffman and J. S. W. Wong, Oscillation and nonoscillation of solutions of generalized Emden-Fowler equations, Trans. Amer. Math. Soc. 167 (1972), 399-434. https://doi.org/10.1090/S0002-9947-1972-0296413-9
  7. E. M. Elabbasy and T. S. Hassan, Interval oscillation for second order sublinear differ- ential equations with a damping term, Int. J. Dyn. Syst. Differ. Equ. 1 (2008), no. 4, 291-299.
  8. E. M. Elabbasy, T. S. Hassan, and S. H. Saker, Oscillation of second-order nonlinear differential equations with a damping term, Electron. J. Differential Equations 2005 (2005), No. 76, 13 pp.
  9. M. A. El-Sayed, An oscillation criterion for a forced second order linear differential equation, Proc. Amer. Math. Soc. 118 (1993), no. 3, 813-817.
  10. L. Erbe, T. S. Hassan, and A. Peterson, Oscillation of second order neutral delay differential equations, Adv. Dyn. Syst. Appl. 3 (2008), no. 1, 53-71.
  11. A. F. Guvenilir and A. Zafer, Second order oscillation of forced functional differential equations with oscillatory potentials, Comput. Math. Appl. 51 (2006), no. 9-10, 1395-1404. https://doi.org/10.1016/j.camwa.2006.02.002
  12. G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities, Second ed., Cambridge University Press, Cambridge, 1988.
  13. T. S. Hassan, Interval oscillation for second order nonlinear differential equations with a damping term, Serdica Math. J. 34 (2008), no. 4, 715-732.
  14. T. S. Hassan, L. Erbe, and A. Peterson, Forced oscillation of second order functional differential equations with mixed nonlinearities, Acta Mathematica Scientia 31B (2011), no. 2, 613-626.
  15. T. S. Hassan and Q. Kong, Interval criteria for forced oscillation of differential equations with p-Laplacian, damping, and mixed nonlinearities, Dynamic Systems & Applications 20 (2011), 279-294.
  16. A. G. Kartsatos, On the maintenance of oscillations of nth order equations under the effect of a small forcing term, J. Differential Equations 10 (1971), 355-363. https://doi.org/10.1016/0022-0396(71)90058-1
  17. A. G. Kartsatos, Maintenance of oscillations under the effect of a periodic forcing term, Proc. Amer. Math. Soc. 33 (1972), 377-383. https://doi.org/10.1090/S0002-9939-1972-0330622-0
  18. M. S. Keener, On the solutions of certain linear nonhomogeneous second-order differ- ential equations, Applicable Anal. 1 (1971), no. 1, 57-63. https://doi.org/10.1080/00036817108839006
  19. Q. Kong, Interval criteria for oscillation of second-order linear ordinary differential equations, J. Math. Anal. Appl. 229 (1999), no. 1, 258-270. https://doi.org/10.1006/jmaa.1998.6159
  20. Q. Kong, Oscillation criteria for second order half-linear differential equations, Differential equations with applications to biology (Halifax, NS, 1997), 317-323, Fields Inst. Commun., 21, Amer. Math. Soc., Providence, RI, 1999.
  21. Q. Kong and J. S. W. Wong, Oscillation of a forced second order differential equations with a deviating argument, Funct. Differ. Equ. 17 (2010), no. 1-2, 141-155.
  22. Q. Kong and B. G. Zhang, Oscillation of a forced second order nonlinear equation, Chinese Ann. Math. Ser. B 15 (1994), no. 1, 59-68.
  23. M. K. Kwong and J. S. W. Wong, Linearization of second order nonlinear oscillation theorems, Trans. Amer. Math. Soc. 279 (1983), no. 2, 705-722. https://doi.org/10.1090/S0002-9947-1983-0709578-6
  24. A. H. Nasr, Sufficient conditions for the oscillation of forced super-linear second order differential equations with oscillatory potential, Proc. Amer. Math. Soc. 126 (1998), no. 1, 123-125. https://doi.org/10.1090/S0002-9939-98-04354-8
  25. C. H. Ou and J. S. W. Wong, Forced oscillation of nth-order functional differential equations, J. Math. Anal. Appl. 262 (2001), no. 2, 722-731. https://doi.org/10.1006/jmaa.2001.7614
  26. Ch. G. Philos, Oscillation theorems for linear differential equations of second order, Arch. Math. (Basel) 53 (1989), no. 5, 482-492. https://doi.org/10.1007/BF01324723
  27. S. M. Rankin, Oscillation theorems for second order nonhomogeneous linear differential equations, J. Math. Anal. Appl. 53 (1976), no. 3, 550-553. https://doi.org/10.1016/0022-247X(76)90091-3
  28. A. Skidmore and J. J. Bowers, Oscillatory behavior of solutions of y′' + p(x)y = f(x), J. Math. Anal. Appl. 49 (1975), 317-323. https://doi.org/10.1016/0022-247X(75)90183-3
  29. A. Skidmore and W. Leighton, On the differential equation y"+p(x)y = f(x), J. Math. Anal. Appl. 43 (1973), 46-55. https://doi.org/10.1016/0022-247X(73)90256-4
  30. Y. G. Sun, A note on Nasr's and Wong's papers, J. Math. Anal. Appl. 286 (2003), no. 1, 363-367. https://doi.org/10.1016/S0022-247X(03)00460-8
  31. Y. G. Sun and Q. Kong, Interval criteria for forced oscillation with nonlinearities given by Riemann-Stieltjes integrals, Comput. Math. Appl. 62 (2011), no. 1, 243-252. https://doi.org/10.1016/j.camwa.2011.04.072
  32. Y. G. Sun and F. W. Meng, Interval criteria for oscillation of second order differential equations with mixed nonlinearities, Appl. Math. Comp. 198 (2008), no. 1, 375-381. https://doi.org/10.1016/j.amc.2007.08.042
  33. Y. G. Sun, C. H. Ou, and J. S. W. Wong, Interval oscillation theorems for a linear second-order differential equation, Comput. Math. Appl. 48 (2004), no. 10-11, 1693-1699. https://doi.org/10.1016/j.camwa.2003.08.012
  34. Y. G. Sun and J. S. W. Wong, Note on forced oscillation of nth-order sublinear differ- ential equations, J. Math. Anal. Appl. 298 (2004), no. 1, 114-119. https://doi.org/10.1016/j.jmaa.2004.03.076
  35. Y. G. Sun and J. S. W. Wong, Oscillation criteria for second order forced ordinary differential equations with mixed nonlinearities, J. Math. Anal. Appl. 334 (2007), no. 1, 549-560. https://doi.org/10.1016/j.jmaa.2006.07.109
  36. H. Teufel, Forced second order nonlinear oscillations, J. Math. Anal. Appl. 40 (1972), 148-152. https://doi.org/10.1016/0022-247X(72)90037-6
  37. J. S. W. Wong, Second order nonlinear forced oscillations, SIAM J. Math. Anal. 19 (1988), no. 3, 667-675. https://doi.org/10.1137/0519047
  38. J. S. W. Wong, Oscillation criteria for a forced second-order linear differential equation, J. Math. Anal. Appl. 231 (1999), no. 1, 235-240. https://doi.org/10.1006/jmaa.1998.6259
  39. Q. Yang, Interval oscillation criteria for a forced second order nonlinear ordinary differential equations with oscillatory potential, Appl. Math. Comput. 136 (2003), no. 1, 49-64.

Cited by

  1. Oscillation of impulsive functional differential equations with oscillatory potentials and Riemann-Stieltjes integrals vol.2012, pp.1, 2012, https://doi.org/10.1186/1687-1847-2012-175
  2. Oscillation Criteria for Functional Nonlinear Dynamic Equations with $${\gamma}$$ γ -Laplacian, Damping and Nonlinearities Given by Riemann–Stieltjes Integrals vol.13, pp.3, 2016, https://doi.org/10.1007/s00009-015-0553-z
  3. Comparison criteria for odd order forced nonlinear functional neutral dynamic equations vol.251, 2015, https://doi.org/10.1016/j.amc.2014.11.095
  4. Oscillation criteria for higher order nonlinear dynamic equations vol.287, pp.14-15, 2014, https://doi.org/10.1002/mana.201300157
  5. Comparison criteria for third order functional dynamic equations with mixed nonlinearities vol.268, 2015, https://doi.org/10.1016/j.amc.2015.06.046