DOI QR코드

DOI QR Code

THE QUANTUM sl(n, ℂ) REPRESENTATION THEORY AND ITS APPLICATIONS

  • Received : 2011.03.06
  • Published : 2012.09.01

Abstract

In this paper, we study the quantum sl($n$) representation category using the web space. Specially, we extend sl($n$) web space for $n{\geq}4$ as generalized Temperley-Lieb algebras. As an application of our study, we find that the HOMFLY polynomial $P_n(q)$ specialized to a one variable polynomial can be computed by a linear expansion with respect to a presentation of the quantum representation category of sl($n$). Moreover, we correct the false conjecture [30] given by Chbili, which addresses the relation between some link polynomials of a periodic link and its factor link such as Alexander polynomial ($n=0$) and Jones polynomial ($n=2$) and prove the corrected conjecture not only for HOMFLY polynomial but also for the colored HOMFLY polynomial specialized to a one variable polynomial.

Keywords

Acknowledgement

Supported by : Korea Science and Engineering Foundation (KOSEF)

References

  1. C. Adams, The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots, New York, W. H. Freeman, 1994.
  2. C. Blanchet, N. Habegger, G. Masbaum, and P. Vogel, Topological quantum field theories derived from the Kauffman bracket, Topology 34 (1995), no. 4, 883-927. https://doi.org/10.1016/0040-9383(94)00051-4
  3. S. Cautis and J. Kamnitzer, Knot homology via derived categories of coherent sheaves I. The SL(2) case, Duke Math. J. 142 (2008), no. 3, 511-588. https://doi.org/10.1215/00127094-2008-012
  4. N. Chbili, The quantum SU(3) invariant of links and Murasugi's congruence, Topology Appl. 122 (2002), no. 3, 479-485.
  5. N. Chbili, Quantum invariants and finite group actions on three-manifolds, Topology Appl. 136 (2004), no. 1-3, 219-231. https://doi.org/10.1016/S0166-8641(03)00221-9
  6. Q. Chen and T. Le, Quantum invariants of periodic links and periodic 3-manifolds, Fund. Math. 184 (2004), 55-71. https://doi.org/10.4064/fm184-0-4
  7. I. Frenkel and M. Khovanov, Canonical bases in tensor products and graphical calculus for $U_{q}$(sl2), Duke Math. J. 87 (1997), no. 3, 409-480. https://doi.org/10.1215/S0012-7094-97-08715-9
  8. W. Fulton and J. Harris, Representation Theory, Graduate Texts in Mathematics, 129, Springer-Verlag, New York-Heidelberg-Berlin, 1991.
  9. V. F. R. Jones, Index for subfactors, Invent. Math. 72 (1983), no. 1, 1-25. https://doi.org/10.1007/BF01389127
  10. V. F. R. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. of Math. 126 (1987), no. 2, 335-388. https://doi.org/10.2307/1971403
  11. M.-J. Jeong and C.-Y. Park, Lens knots, periodic links and Vassiliev invariants, J. Knot Theory Ramifications 13 (2004), no. 8, 1041-1056. https://doi.org/10.1142/S0218216504003615
  12. C. Kassel, M. Rosso, and V. Turaev, Quantum Groups and Knot Invariants, Panoramas et Syntheses, 5, Societe Mathematique de France, 1997.
  13. M. Khovanov, sl(3) link homology, Algebr. Geom. Topol. 4 (2004), 1045-1081. https://doi.org/10.2140/agt.2004.4.1045
  14. M. Khovanov, Categorifications of the colored Jones polynomial, J. Knot Theory Ramifications 14 (2005), no. 1, 111-130. https://doi.org/10.1142/S0218216505003750
  15. M. Khovanov, private communication.
  16. M. Khovanov and L. Rozansky, Matrix factorizations and link homology, Fund. Math. 199 (2008), no. 1, 1-91. https://doi.org/10.4064/fm199-1-1
  17. D. Kim, Graphical Calculus on Representations of Quantum Lie Algebras, Thesis, UC-Davis, 2003, arXiv:math.QA/0310143.
  18. D. Kim and J. Lee, The quantum sl(3) invariants of cubic bipartite planar graphs, J. Knot Theory Ramifications 17 (2008), no. 3, 361-375. https://doi.org/10.1142/S0218216508006142
  19. R. Kirby and P. Melvin, The 3-manifold invariants of Witten and Reshetikhin-Turaev for sl(2), Invent. Math. 105 (1991), no. 3, 473-545. https://doi.org/10.1007/BF01232277
  20. G. Kuperberg, Spiders for rank 2 Lie algebras, Comm. Math. Phys. 180 (1996), no. 1, 109-151. https://doi.org/10.1007/BF02101184
  21. T. Le, Integrality and symmetry of quantum link invariants, Duke Math. J. 102 (2000), no. 2, 273-306. https://doi.org/10.1215/S0012-7094-00-10224-4
  22. W. Lickorish, Distinct 3-manifolds with all SU(2)q invariants the same, Proc. Amer. Math. Soc. 117 (1993), no. 1, 285-292.
  23. S. Morrison, A Diagrammatic Category for the Representation Theory of $U_{q}$($sl_{n}$), UC Berkeley Ph.D. thesis, arXiv:0704.1503.
  24. K. Murasugi, On periodic knots, Comment. Math. Helv. 46 (1971), 162-174. https://doi.org/10.1007/BF02566836
  25. K. Murasugi, Jones polynomials of periodic links, Pacific J. Math. 131 (1988), no. 2, 319-329. https://doi.org/10.2140/pjm.1988.131.319
  26. H. Murakami, Asymptotic Behaviors of the colored Jones polynomials of a torus knot, Internat. J. Math. 15 (2004), no. 6, 547-555. https://doi.org/10.1142/S0129167X04002454
  27. H.Murakami, T. Ohtsuki, and S. Yamada, Homfly polynomial via an invariant of colored plane graphs, Enseign. Math. (2) 44 (1998), no. 3-4, 325-360.
  28. T. Ohtsuki and S. Yamada, Quantum SU(3) invariant of 3-manifolds via linear skein theory, J. Knot Theory Ramifications 6 (1997), no. 3, 373-404. https://doi.org/10.1142/S021821659700025X
  29. J. H. Przytycki, On Murasugi's and Traczyk's criteria for periodic links, Math. Ann. 283 (1989), no. 3, 465-478. https://doi.org/10.1007/BF01442739
  30. J. Przytycki and A. Sikora, $SU_{n}$-quantum invariants for periodic links, Diagrammatic morphisms and applications (San Francisco, CA, 2000), 199-205, Contemp. Math., 318, Amer. Math. Soc., Providence, RI, 2003.
  31. J. Przytycki and A. Sikora, On skein algebras and $Sl_{2}$(C)-character varieties, Topology 39 (2000), no. 1, 115-148. https://doi.org/10.1016/S0040-9383(98)00062-7
  32. N. Yu. Reshetikhin and V. G. Turaev, Ribbob graphs and their invariants derived from quantum groups, Comm. Math. Phys. 127 (1990), no. 1, 1-26. https://doi.org/10.1007/BF02096491
  33. N. Yu. Reshetikhin and V. G. Turaev, Invariants of 3-manifolds via link polynomials and quantum groups, Invent. Math. 103 (1991), no. 3, 547-597. https://doi.org/10.1007/BF01239527
  34. A. Sikora and B. Westbury, Confluence theory for graphs, Algebr. Geom. Topol. 7 (2007), 439-478. https://doi.org/10.2140/agt.2007.7.439
  35. P. Traczyk, A criterion for knots of period 3, Topology Appl. 36 (1990), no. 3, 275-281. https://doi.org/10.1016/0166-8641(90)90051-3
  36. V. G. Turaev, The Conway and Kauffman modules of a solid torusa, (translation) J. Soviet Math. 52 (1990), no. 1, 2799-2805. https://doi.org/10.1007/BF01099241
  37. T. Van Zandt, PSTricks: PostScript macros for generic $T_{E}X$, Available at ftp://ftp.princeton.edu/pub/tvz/.
  38. M. Vybornov, Solutions of the Yang-Baxter equation and quantum sl(2), J. Knot Theory Ramifications 8 (1999), no. 7, 953-961. https://doi.org/10.1142/S0218216599000614
  39. H. Wenzl, On sequences of projections, C. R. Math. Rep. Acad. Sci. Canada 9 (1987), no. 1, 5-9.
  40. B. Westbury, Invariant tensors for the spin representation of so(7), Math. Proc. Cambridge Philos. Soc. 144 (2008), no. 1, 217-240.
  41. E. Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989), no. 3, 351-399. https://doi.org/10.1007/BF01217730
  42. Y. Yokota, The skein polynomial of periodic knots, Math. Ann. 291 (1991), no. 2, 281-291. https://doi.org/10.1007/BF01445208
  43. Y. Yokota, The Jones polynomial of periodic knots, Proc. Amer. Math. Soc. 113 (1991), no. 3, 889-894. https://doi.org/10.1090/S0002-9939-1991-1064908-3
  44. Y. Yokota, The Kauffman polynomial of periodic knots, Topology 32 (1993), no. 2, 309-324. https://doi.org/10.1016/0040-9383(93)90022-N
  45. Y. Yokota, Skein and quantum SU(N) invariants of 3-manifolds, Math. Ann. 307 (1997), no. 1, 109-138. https://doi.org/10.1007/s002080050025

Cited by

  1. On skein relations in class S theories vol.2015, pp.6, 2015, https://doi.org/10.1007/JHEP06(2015)186
  2. Webs and quantum skew Howe duality vol.360, pp.1-2, 2014, https://doi.org/10.1007/s00208-013-0984-4