DOI QR코드

DOI QR Code

Study on Low-Temperature Solid Oxide Fuel Cells Using Y-Doped BaZrO3

Y-doped BaZrO3을 이용한 저온형 박막 연료전지 연구

  • Chang, Ik-Whang (Dept. of Intelligent Convergence Systems, Seoul Nat'l Univ.) ;
  • Ji, Sang-Hoon (Dept. of Intelligent Convergence Systems, Seoul Nat'l Univ.) ;
  • Paek, Jun-Yeol (School of Mechanical and Aerospace Engineering, Seoul Nat'l Univ.) ;
  • Lee, Yoon-Ho (School of Mechanical and Aerospace Engineering, Seoul Nat'l Univ.) ;
  • Park, Tae-Hyun (School of Mechanical and Aerospace Engineering, Seoul Nat'l Univ.) ;
  • Cha, Suk-Won (School of Mechanical and Aerospace Engineering, Seoul Nat'l Univ.)
  • 장익황 (서울대학교 지능형융합시스템학과) ;
  • 지상훈 (서울대학교 지능형융합시스템학과) ;
  • 백준열 (서울대학교 기계항공공학부) ;
  • 이윤호 (서울대학교 기계항공공학부) ;
  • 박태현 (서울대학교 기계항공공학부) ;
  • 차석원 (서울대학교 기계항공공학부)
  • Received : 2012.03.13
  • Accepted : 2012.07.02
  • Published : 2012.09.01

Abstract

In this study, we fabricate and investigate low-temperature solid oxide fuel cells with a ceramic substrate/porous metal/ceramic/porous metal structure. To realize low-temperature operation in solid oxide fuel cells, the membrane should be fabricated to have a thickness of the order of a few hundreds nanometers to minimize IR loss. Yttrium-doped barium zirconate (BYZ), a proton conductor, was used as the electrolyte. We deposited a 350-nm-thick Pt (anode) layer on a porous substrate by sputter deposition. We also deposited a 1-${\mu}m$-thick BYZ layer on the Pt anode using pulsed laser deposition (PLD). Finally, we deposited a 200-nm-thick Pt (cathode) layer on the BYZ electrolyte by sputter deposition. The open circuit voltage (OCV) is 0.806 V, and the maximum power density is 11.9 mW/$cm^2$ at $350^{\circ}C$. Even though a fully dense electrolyte is deposited via PLD, a cross-sectional transmission electron microscopy (TEM) image reveals many voids and defects.

본 연구에서는 저온형 연료전지와 고온형 연료전지의 작동 및 구성 요소 측면 단점들을 보완하기 위해 중온 영역에서 작동하는 박막 연료전지를 제작하였다. 박막 연료전지는 이트륨이 도핑된 바륨 지르코네이트(BYZ) 전해질과 백금 수소극/공기극으로 이루어져 있으며, 성능은 $350^{\circ}C$에서 측정하였다. 350nm의 두께를 가지는 백금 수소극은 다공성 기판 위에 스퍼터링 기법을 이용하여 증착하였다. BYZ전해질은 펄스레이저 기법을 이용하여 $1{\mu}m$ 증착하였고, 상부에 스퍼터링 기법을 이용하여 200nm의 두께를 가지는 백금 공기극을 증착하였다. 개회로 전압은 약 0.81V이었고, 최대 출력 성능은 11.9mW/$cm^2$이었다.

Keywords

References

  1. Hoffert, M. I., 2002, "Advanced Technology Paths to Global Climate Stability : Energy for a Greenhouse Planet," Science, Vol. 298, p. 981. https://doi.org/10.1126/science.1072357
  2. Bull, S. R., 2001, "Renewable Energy Today and Tomorrow," Proceedings of the IEEE, Vol. 89, No. 8, pp. 1220-1221.
  3. O'Hayre, R., Cha, S.-W., Colella, W. and Prinz, F. B., 2009, "Fuel Cell Fundamentals 2nd edition," John Wiley & Sons, Hoboken , pp.9-12.
  4. Schultz, T. and Sundmacher, K., 2006, "Mass, Charge and Energy Transport Phenomena in a Polymer Electrolyte Membrane(PEM) Used in a Direct Methanol Fuel Cell(DMFC): Modelling and Experimental Validation of Fluxes, Journal of Membrane Science 276, pp. 272-275. https://doi.org/10.1016/j.memsci.2005.10.001
  5. Kreuer, K.D., 2003, "Proton-Conducting Oxides," Annu.Rev.Mater.Res, pp. 333-359.
  6. Basu, S., 2007, "Recent Treands in Fuel cell Science and Technology," Springer, New York, pp. 40-41.
  7. O'Hayre, R., Cha, S.-W., Colella, W. and Prinz, F. B., 2009, "Fuel Cell Fundamentals 2nd edition," John Wiley & Sons, Hoboken, pp. 270-272.
  8. de Souza, S., Visco, S. J. and De Jonghe, J. C., 1997, "Thin-Film Solid Oxide Fuel Cell with High Performance at Low Temperature," N.H Elsevier, Solid state Ionics 98, pp. 57-61. https://doi.org/10.1016/S0167-2738(96)00525-5
  9. Ito, N., Iijima, M., Kimura, K. and Iguchi, S., 2005, "New Intermediate Temperature Fuel Cell with Ultra- Thin Proton Conductor Electrolyte," Journal of Power Sources 152, pp. 200-203. https://doi.org/10.1016/j.jpowsour.2005.01.009
  10. Sun, W., Yan, L., Shi, Z., Zhu, Z. and Liu, W., 2010, "Fabrication and Performance of a Proton-Conducting Solid Oxide Fuel Cell Based on a Thin $BaZr_{0.8}Y_{0.2}O_{3-{\delta}}$ Electrolyte Membrane," Journal of Power Sources 195, pp. 4727-4730. https://doi.org/10.1016/j.jpowsour.2010.02.012
  11. Klein, S., Finger, F., Carius, R., Dylla, T., Rech, B., Grimm, M., Houben, L. and Stutzmann, M., 2003, "Intrinsic Microcrystalline Silicon Prepared by Hot-Wire Chemical Vapour Deposition for Thin Film Solar Cells," Thin Solid Films 430, pp. 202-207. https://doi.org/10.1016/S0040-6090(03)00111-1
  12. Bard, A. J. and Faulkner, L. R., 2001, "Electrochemical Methods: Fundamentals and Application 2nd edition," John Wiley & Sons, Hamilton, pp. 88-90.
  13. Shim, J. H., Park, J. S., An, J., Gϋr, T. M, Kang, S. and Prinz, F. B., 2009, "Intermediate-Temperature Ceramic Fuel Cells with Thin Film Yttrium-Doped Barium Zirconate Electrolytes," Chemistry of Materials, Vol. 21, No. 14, pp. 3290-3296. https://doi.org/10.1021/cm900820p