DOI QR코드

DOI QR Code

Thermodynamic Analysis of Trilateral Cycle Applied to Exhaust Gas of Marine Diesel Engine

선박용 디젤엔진의 배기가스에 적용된 3 변 사이클의 열역학적 분석

  • Choi, Byung-Chul (Environment & Plant Team, Korean Register of Shipping) ;
  • Kim, Young-Min (Department of Engine Research, Korea Institute of Machinery & Materials)
  • 최병철 ((사)한국선급 환경플랜트팀) ;
  • 김영민 (한국기계연구원 그린동력연구실)
  • Received : 2012.03.20
  • Accepted : 2012.07.16
  • Published : 2012.09.01

Abstract

The thermodynamic characteristics of a trilateral cycle with water as a working fluid have been theoretically investigated for an electric generation system to recover the waste heat of the exhaust gas from a diesel engine used for the propulsion of a large ship. As a result, when a heat source was given, the efficiencies of energy and exergy were maximized by the specific conditions of the pressure and mass flow rate for the working fluid at the turbine(expander) inlet. In this case, as the condensation temperature increased, the volume expansion ratio of the turbine could be reduced properly; however, the exergy loss of the heat source and exergy destruction of the condenser increased. Therefore, in order to recover the waste exergy from the topping cycle, the combined cycle with a bottoming cycle such as an organic Rankine cycle, which is utilized at relatively low temperatures, was found to be useful.

선박의 주 추진용 디젤엔진에서 배출되는 배기가스의 폐열을 회수하는 발전시스템에 대하여, 작동유체로서 물이 적용된 3 변 사이클에 대한 열역학적 특성을 이론적으로 조사하였다. 그 결과로, 하나의 열원이 주어지면, 에너지 및 엑서지 효율은 터빈입구에서 작동유체에 대한 압력 및 온도의 특정한 조건에 의하여 최대화될 수 있었다. 그러한 조건에 대하여 응축온도의 증가에 따라, 터빈의 체적 팽창비를 적절하게 감소시킬 수 있었는데, 열원의 엑서지 손실률 및 응축기에서 엑서지 파괴율이 크게 증가되었다. 따라서, 상부 사이클에서 버려지는 엑서지를 회수하기 위하여, 저온 열원에 적합한 유기랭킨사이클을 하부 사이클로 적용하는 복합 사이클이 유용할 수 있다.

Keywords

References

  1. Buhaug, Ø., Corbett, J.J., Endresen, Ø., Eyring, V., Faber, J., Hanayama, S., Lee, D.S., Lee, D., Lindstad, H., Markowska, A.Z., Mjelde, A., Nelissen, D., Nilsen, J., Pålsson, C., Winebrake, J.J., Wu, W. and Yoshida, K., 2009, Second IMO GHG Study 2009, International Maritime Organization(IMO) London, UK.
  2. IMO, 2011, Chapter 4 Regulations on Energy Efficiency for Ships, MEPC 62/WP. 11/Add. 1/Rev. 1.
  3. MAN Diesel & Turbo, 2005, Thermo Efficiency System for Reduction of Fuel Consumption and $CO_{2}$ Emission.
  4. Choi, B.C. and Kim, Y.M., 2012, "Exhaust-Gas Heat- Recovery System of Marine Diesel Engine (I) - Energy Efficiency Comparison for working fluids of R245fa and Water," Trans. KSME (B), Vol. 36, No. 3, pp. 293-299. https://doi.org/10.3795/KSME-B.2012.36.3.293
  5. Choi, B.C. and Kim, Y.M., 2012, "Exhaust-Gas Heat- Recovery System of Marine Diesel Engine (II) - Exergy Analysis for working fluids of R245fa and Water," Trans. KSME (B), Vol. 36, No. 6, pp. 593-600. https://doi.org/10.3795/KSME-B.2012.36.6.593
  6. Moran, M.J. and Shapiro, H.N., 2006. Fundamentals of Engineering Thermodynamics, 6th ed., John Wiley & Sons, pp. 174-199.
  7. DiPippo, R., 2007, "Ideal Thermal Efficiency for Geothermal Binary Plants," Geothermics, Vol. 36, pp. 276-285. https://doi.org/10.1016/j.geothermics.2007.03.002
  8. Bryson, M.J., 2007, "The Conversion of Low Grade Heat into Electricity using the Thermosyphon Rankine Engine and Trilateral Flash Cycle," A Doctoral Dissertation, RMIT University.
  9. Smith, I.K., 1993, "Development of the Trilateral Flash Cycle System Part 1: Fundamental Considerations," Proceedings of Institution of Mechanical Engineers, Part A, Vol. 207, pp. 179-194. https://doi.org/10.1243/PIME_PROC_1993_207_079_02
  10. Fischer, J., 2011, "Comparison of Trilateral Cycles and Organic Rankine Cycles," Energy, Vol. 36, pp. 6208-6219. https://doi.org/10.1016/j.energy.2011.07.041
  11. Dai, Y., Wang, J. and Gao, L., 2009, "Parametric Optimization and Comparative Study of Organic Rankine Cycle for Low Grade Waste Heat Recovery," Energy Conversion and Management, Vol. 50, pp. 576-582. https://doi.org/10.1016/j.enconman.2008.10.018
  12. Al-Sulaiman, F.A., Dincer, I. and Hamdullahpur, F., 2010, "Exergy Analysis of an Integrated Solid Oxide Fuel Cell and Organic Rankine Cycle for Cooling, Heating, and Power Production," Journal of Power Sources, Vol. 195, 2346-2354. https://doi.org/10.1016/j.jpowsour.2009.10.075
  13. Al-Sulaiman, F.A., Hamdullahpur, F. and Dincer, I., 2011, "Greenhouse Gas Emission and Exergy Assessments of an Integrated Organic Rankine Cycle with a Biomass Combustor for Combined Cooling, Heating, and Power Production," Applied Thermal Engineering, Vol. 31, pp. 439-446. https://doi.org/10.1016/j.applthermaleng.2010.09.019
  14. Cengel, Y.A. and Boles, M.A., 2006, Thermodynamics: An Engineering Approach, 5th Ed., McGraw-Hill, pp. 279-605.
  15. Incropera, F.P., Dewitt, D.P., Bergman, T.L. and Lavine, A.S., 2007, Fundamentals of Heat and Mass Transfer 6th Ed., John Wiley & Sons, pp. 669-722.
  16. Hyundai Heavy Industries Co., Ltd., 2011, Technical File for Hyundai-Wartsila 12RT-flex96C-B.
  17. Lemmon, E.W., Huber, M.L. and McLinden, M.O., 2010, REFPROP Ver. 9.0, NIST.
  18. Klein, S.A., Engineering Equation Solver(EES), Prof., Ver. 8.830.

Cited by

  1. Theoretical Study on Fuel Savings of Marine Diesel Engine by Exhaust-Gas Heat-Recovery System of Combined Cycle vol.37, pp.2, 2013, https://doi.org/10.3795/KSME-B.2013.37.2.171