References
- Raveendran, P.; Fu, J.; Wallen, S. L. Green. Chem. 2006, 8, 34. https://doi.org/10.1039/b512540e
- Dua, B.; Jiang, H. Electrochem. Commun. 2007, 9, 1165. https://doi.org/10.1016/j.elecom.2007.01.007
- Han, G.; Ghosh, P.; Rotello, V. M. Nanomedicine 2007, 2, 113. https://doi.org/10.2217/17435889.2.1.113
- Luo, P. G.; Stutzenberger, F. J. Adv. Appl. Microbiol. 2008, 63, 145. https://doi.org/10.1016/S0065-2164(07)00004-4
- Guptha, S.; Huda, S.; Kilpatrick, P. K.; Velev, O. D. Anal. Chem. 2007, 79, 3810.
- Song, J. Y.; Kim, B. S. Bioprocess. Biosyst. Engg. 2008, 32, 79.
- Sastry, M.; Ahmad, A.; Khan, M. I.; Kumar, R. Curr. Sci. 2003, 85, 162.
- Nagajyothi, P. C.; Sreekanth, T. V. M.; Prasad, T. N. V. K. V.; Lee, K. D. Adv. Sci. Lett. 2012, 5, 124. https://doi.org/10.1166/asl.2012.1948
- Ankamwar, B.; Damle, C.; Ahmad, A.; Sastry, M. J. Nanosci. Nanotech. 2005, 5, 1665. https://doi.org/10.1166/jnn.2005.184
- Song, Y. J.; Jang, H. K.; Kim, S. B. Proc. Biochem. 2009, 44, 1133. https://doi.org/10.1016/j.procbio.2009.06.005
- Nagajyothi, P. C.; Prasad, T. N. V. K. V.; Sreekanth, T. V. M.; Lee, K. D. Dige. J. Nanomat. Biostru. 2011, 6, 121.
- Chandran, S. P.; Chaudhary, M.; Pasricha, R.; Ahmad, A.; Sastry, M. Biotechnol. Prog. 2000, 22, 577.
- Huang, J.; Lin, L.; Li, Q.; Sun, D.; Wang, Y.; Lu, Y.; He, N.; Yang, K.; Yang, X.; Wang, H.; Wang, W.; Lin, W. Ind. Eng. Chem. Res. 2008, 47, 6081. https://doi.org/10.1021/ie701698e
- Nagajyothi, P. C.; Lee, K. D. J. Nanomat. 2011, 1 (ID 573429).
- Jain, D.; Kumar Daima, H.; Kachhwaha, S.; Kothari, S. L. Dig. J. Nanomat. Biostru. 2009, 4, 557.
- Kasthuri, J.; Kathiravan, K.; Rajendiran, N. J. Nanopart. Res. 2009, 11, 1075. https://doi.org/10.1007/s11051-008-9494-9
- Vigneshwaran, N.; Ashtaputre, N. M.; Varadarajan, P. V.; Nachane, R. P.; Paralikar, K. M.; Balasubramanya, R. H. Mat. Lett. 2007, 61, 1413. https://doi.org/10.1016/j.matlet.2006.07.042
- Duran, N.; Marcato, P. D.; Alves, O. L.; DeSouza, G. I. H.; Esposito, E. J. Nanobiotechnol. 2005, 3, 1. https://doi.org/10.1186/1477-3155-3-1
- Kowshik, M.; Ashtaputre, S.; Kharrazi, S.; Vogel, W.; Urban, J.; Kulakarni, S. K.; Paknikar, K. M. Nanotech. 2003, 14, 95. https://doi.org/10.1088/0957-4484/14/1/321
- Kalimuthu, K.; Shubaash, G.; Ramanathan, V.; Venkatraman, D.; Sureshbabu Ram Kumar, P.; Sangiliyandi, G. Coll. Surf. B 2010, 77, 174. https://doi.org/10.1016/j.colsurfb.2010.01.018
- Sastry, M.; Mayyaa, K. S.; Bandyopadhyay, K. Coll. Surf. A 1997, 127, 221. https://doi.org/10.1016/S0927-7757(97)00087-3
- Thirumurugan, A.; Jiflin, G. J.; Rajagomathi, G,; Neethu Anns, T.; Ramachandran, S.; Jaiganesh, R. Int. J. Biol. Tech. 2010, 1, 75.
- Henglein, A. J. Phys. Chem. 1993, 97, 5457. https://doi.org/10.1021/j100123a004
- Rajasekharreddy, P.; Usha Rani, P.; Sreedhar, B. J. Nanopart. Res. 2010, 12, 1711. https://doi.org/10.1007/s11051-010-9894-5
Cited by
- Antibacterial activity of silver nanoparticle-coated fabric and leather against odor and skin infection causing bacteria vol.98, pp.19, 2014, https://doi.org/10.1007/s00253-014-5945-7
- Blue emitting ZnO nanostructures grown through cellulose bio-templates vol.31, pp.4, 2015, https://doi.org/10.1002/bio.3061
- Evaluation of the antimicrobial activity and cytotoxicity of phytogenic gold nanoparticles vol.5, pp.5, 2015, https://doi.org/10.1007/s13204-014-0354-x
- In situ green synthesis of silver nanoparticles/chitosan/poly vinyl alcohol/poly ethylene glycol hydrogel nanocomposite for novel finishing of nasal tampons vol.45, pp.6, 2016, https://doi.org/10.1177/1528083714560255
- Biosynthesis of silver nanocomposite with Tarragon leaf extract and assessment of antibacterial activity vol.8, pp.2, 2018, https://doi.org/10.1007/s40097-018-0263-8
- Rapid green synthesis of silver nanoparticles from Chrysanthemum indicum L and its antibacterial and cytotoxic effects: an in vitro study vol.9, pp.None, 2012, https://doi.org/10.2147/ijn.s53546
- Biosynthesis of Silver and Gold Nanoparticles Using Huangdan (Camellia sinensis) Leaf Extract vol.45, pp.7, 2012, https://doi.org/10.1080/15533174.2013.862817
- Green and energy-efficient methods for the production of metallic nanoparticles vol.6, pp.None, 2012, https://doi.org/10.3762/bjnano.6.243
- Biosynthesis of silver nanoparticles using Euglena gracilis, Euglena intermedia and their extract vol.9, pp.1, 2012, https://doi.org/10.1049/iet-nbt.2013.0062
- Structure and decomposition of the silver formate Ag(HCO2) vol.246, pp.None, 2012, https://doi.org/10.1016/j.jssc.2016.11.022
- Recent Developments in the Facile Bio-Synthesis of Gold Nanoparticles (AuNPs) and Their Biomedical Applications vol.15, pp.None, 2020, https://doi.org/10.2147/ijn.s233789
- Novel Eco-Friendly Synthesis of Biosilver Nanoparticles as a Colorimetric Probe for Highly Selective Detection of Fe (III) Ions in Aqueous Solution vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/5527519
- A green nano-biosynthesis of selenium nanoparticles with Tarragon extract: Structural, thermal, and antimicrobial characterization vol.141, pp.None, 2012, https://doi.org/10.1016/j.lwt.2021.110969
- Green Synthesis of Gold Nanoparticles Using Plant Extracts as Beneficial Prospect for Cancer Theranostics vol.26, pp.21, 2021, https://doi.org/10.3390/molecules26216389
- Green Synthesis of Gold Nanoparticles Using Polianthes tuberosa L. Floral Extract vol.10, pp.11, 2012, https://doi.org/10.3390/plants10112370
- In vitro antibacterial activities of silver nanoparticles synthesised using the seed extracts of three varieties of Phoenix dactylifera vol.82, pp.None, 2012, https://doi.org/10.1590/1519-6984.242301