References
- Vazquez-Campos, S.; Crego-Calama, M.; Reinhoudt, D. N. Supramol. Chem. 2007, 19, 95. https://doi.org/10.1080/10610270600981716
- Li, D. S.; Wu, Y. P.; Zhang, P.; Du, M.; Zhao, J.; Li, C. P. Cryst. Growth Des. 2010, 10, 2037. https://doi.org/10.1021/cg100090h
- Sessler, J. L.; Lawrence, C. M.; Jayawickramarajah, J. Chem. Soc. Rev. 2007, 36, 314. https://doi.org/10.1039/b604119c
- Hembury, G. A.; Borovkov, V. V.; Inoue, Y. Chem. Rev. 2008, 108, 1. https://doi.org/10.1021/cr050005k
- Li, D. S.; Fu, F.; Zhao J.; Wu, Y. P.; Du, M.; Zou, K.; Dong, W. W.; Wang, Y. Y. Dalton Trans. 2010, 39, 11522. https://doi.org/10.1039/c0dt00900h
- Kitaura, R.; Seki, K.; Akiyama, G.; Kitagawa, S. Angew. Chem. Int. Ed. 2003, 42, 428. https://doi.org/10.1002/anie.200390130
- Ni, Z.; Yasser, A.; Antoun, T.; Yaghi, O. M. J. Am. Chem. Soc. 2005, 127, 12752. https://doi.org/10.1021/ja052055c
- Furukawa, H.; Yaghi, O. M. J. Am. Chem. Soc. 2009, 25, 8876.
- Murugesu, M.; Habrych, M.; Wernsdorfer, W.; Abboud, K. A.; Christou, G. J. Am. Chem. Soc. 2004, 126, 4766. https://doi.org/10.1021/ja0316824
- Glaser, T.; Heidemeier, M.; Weyhermüller, T.; Hoffmann, R. D.; Rupp, H.; Muller, P. Angew. Chem. Int. Ed. 2006, 45, 6033. https://doi.org/10.1002/anie.200600712
- Liu, X. T.; Wang, X. Y.; Zhang, W. X.; Cui, P.; Gao, S. Adv. Funct. Mater. 2006, 18, 2852. https://doi.org/10.1002/adma.200600253
- Wang, J. J.; Gou, L.; Hu, H. M.; Han, Z. X.; Li, D. S.; Xue, G. L.; Yang, M. L.; Shi, Q. Z. Cryst. Growth Des. 2007, 7, 1514. https://doi.org/10.1021/cg0703240
- Seo, J. S.; Whang, D.; Lee, H.; Jun, S. I.; Oh, J.; Young, J.; Kim, K. Nature 2000, 404, 982. https://doi.org/10.1038/35010088
- Dybtsev, D. N.; Nuzhdin, A. L.; Chun, H.; Bryliakov, K. P.; Konstantin, P.; Talsi, E. P.; Fedin, V. P.; Kim, K. Angew. Chem. Int. Ed. 2006, 45, 916. https://doi.org/10.1002/anie.200503023
- Wu, C. D.; Hu, A.; Zhang, L.; Lin, W. J. J. Am. Chem. Soc. 2005, 127, 8940. https://doi.org/10.1021/ja052431t
- Arpi, M.; Guillaume, P.; Maria, T. G. R.; Samiran, M. Polyhedron 2006, 25, 2550. https://doi.org/10.1016/j.poly.2006.03.021
- Jin, C. M.; Wu, L. Y.; Lu, H.; Xu, Y. Cryst. Growth Des. 2008, 8, 215. https://doi.org/10.1021/cg070143y
- Ma, Y.; Cheng, A. L.; Zhang, J. Y.; Yue, Q.; Gao, E. Q. Cryst. Growth Des. 2009, 9, 867. https://doi.org/10.1021/cg800506g
- Chang, Z.; Zhang, A. S.; Hu, T. L.; Bu, X. H. Cryst. Growth Des. 2009, 9, 4840. https://doi.org/10.1021/cg900659r
- Yuan, G.; Shao, K. Z.; Du, D. Y.; Wang, X. L.; Su, Z. M. Solid State Sci. 2011, 13, 1083. https://doi.org/10.1016/j.solidstatesciences.2011.01.014
- Su, C. Y.; Cai, Y. P.; Chen, C. L.; Smith, M. D.; Kaim, W.; Loye, H. C. J. Am. Chem. Soc. 2003, 125, 8595. https://doi.org/10.1021/ja034267k
- Ouellette, W.; Prosvirin, A. V.; Valeich, J.; Dunbar, K. R.; Zubieta, J. Inorg. Chem. 2007, 46, 9067. https://doi.org/10.1021/ic700790h
- Zhang, Q. Z.; Lu, C. Z.; Xia, C. K. Inorg. Chem. Commun. 2005, 8, 304. https://doi.org/10.1016/j.inoche.2005.01.003
- Mahata, P.; Ramya, K. V.; Natarajan, S. Chem. Eur. J. 2008, 14, 5839. https://doi.org/10.1002/chem.200800240
- Frisch, M.; Cahill, C. L. Cryst. Growth Des. 2008, 8, 2921. https://doi.org/10.1021/cg800029z
- Wen, L. L.; Lu, Z. D.; Ren, X. M.; Duan, C. Y.; Meng, Q. J.; Gao, S. Cryst. Growth Des. 2009, 9, 227. https://doi.org/10.1021/cg800329k
- Yao, Y. L.; Che, Y. X.; Zheng, J. M. Cryst. Growth Des. 2008, 8, 2299. https://doi.org/10.1021/cg7010106
- Liu, Y. L.; Kravtsov, V. C.; Eddaoudi, M. Angew. Chem. Int. Ed. 2008, 47, 8446. https://doi.org/10.1002/anie.200802680
- Zhang, X. C.; Xu, L.; Liu, W. G.; Liu, B. Bull. Korean Chem. Soc. 2011, 32, 1692. https://doi.org/10.5012/bkcs.2011.32.5.1692
- Yang, E. C.; Jia, F.; Wang, X. G.; Zhao, X. J. Bull. Korean Chem. Soc. 2008, 29, 2195. https://doi.org/10.5012/bkcs.2008.29.11.2195
- Oro, L. A.; Pinillos, M. T.; Tejel, C.; Foces-Foces, C. Chem. Commun. 1984, 1687.
- Guillem, A.; Leoní, A. B.; Olivier, R.; Patrick, G. Coord. Chem. Rev. 2011, 255, 485. https://doi.org/10.1016/j.ccr.2010.10.038
- Ouellette, W.; Jones, S.; Zubieta, J. Cryst. Eng. Comm. 2011, 13, 4457. https://doi.org/10.1039/c0ce00919a
- Liu, K.; Shi, W.; Cheng, P. Dalton Trans. 2011, 40, 8475. https://doi.org/10.1039/c0dt01578d
- Yi, L.; Ding, B.; Zhao, B.; Cheng, P.; Liao, D. Z.; Yan, S. P.; Jiang, Z. H. Inorg. Chem. 2004, 43, 33. https://doi.org/10.1021/ic0348244
- Su, C. Y.; Goforth, A. M.; Smith, M. D.; Pellechia, P. J.; zur Loye, H. C. J. Am. Chem. Soc. 2004, 126, 3576. https://doi.org/10.1021/ja039022m
- Fu, F.; Li, D. S.; Gao, X. M.; Du, M.; Wu, Y. P.; Zhang, X. N.; Meng, C. X. Cryst. Eng. Comm. 2010, 12, 1227. https://doi.org/10.1039/b913861g
- Holla, B. S.; Poorjary, N. K.; Rao, S. B.; Shivananda, M. K. Eur. J. Med. Chem. 2002, 37, 511. https://doi.org/10.1016/S0223-5234(02)01358-2
- Holla, B. S.; Akberali, P. M.; Shivananda, M. K. II Farmaco. 2001, 56, 919. https://doi.org/10.1016/S0014-827X(01)01124-7
- Genin, M. J.; Allwine, D. A.; Anderson, D. J.; Barbachyn, M. R.; Emmert, D. E.; Garmon, S. A.; Graber, D. R.; Grega, K. C.; Hester, J. B.; Hutchinson, D. K.; Morris, J.; Reischer, R. J.; Ford, C. W.; Zurenko, G. E.; Hamel, J. C.; Schaadt, R. D.; Stapert, D.; Yagi, B. H. J. Med. Chem. 2000, 43, 953. https://doi.org/10.1021/jm990373e
- Hakan, B.; Nesrin, K.; Deniz, S.; Ahmet, D.; Sengul, A. K.; Neslihan, D. Molecules 2010, 15, 2427. https://doi.org/10.3390/molecules15042427
- Tainer, J. A.; Getzoff, E. D.; Richardson, J. S.; Richardson, D. C. Nature 1983, 306, 284. https://doi.org/10.1038/306284a0
- Kremer, E.; Facchin, G.; Estévez, E.; Alborés, P.; Baran, E. J.; Ellena, J.; Torre, M. H. Inorg. Biochem. 2006, 100, 1167. https://doi.org/10.1016/j.jinorgbio.2006.01.042
- Jitsukawa, K.; Harata, M.; Arii, H.; Sakurai, H.; Masuda, H. Inorg. Chim. Acta 2001, 324, 108. https://doi.org/10.1016/S0020-1693(01)00567-9
- Zhou, Y. H.; Fu, H.; Zhao, W. X.; Chen, W. L.; Su, C. Y.; Sun, H. Z.; Ji, L. N.; Mao, Z. W. Inorg. Chem. 2007, 46, 734. https://doi.org/10.1021/ic061541d
- Bonomo, R. P.; Allessandro, F. D.; Grasso, G.; Impellizzeri, G.; Pappalardo, G.; Rizzarelli, E.; Tabbí, G. Inorg. Chim. Acta 2008, 361, 1705. https://doi.org/10.1016/j.ica.2007.01.021
- Balasubramanian, V.; Ezhevskaya, M.; Moons, H.; Neuburger, M.; Cristescu, C.; Doorslaer, S. V.; Palivan, C. Phys. Chem. Chem. Phys. 2009, 11, 6778. https://doi.org/10.1039/b905593b
- Patel, R. N.; Shukla, K. K.; Singh, A.; Choudhary, S. M.; Chauhan, U. K.; Dwivedi, S. Inorg. Chim. Acta 2009, 362, 4891. https://doi.org/10.1016/j.ica.2009.07.037
- Patel, M. N.; Parmar, P. A.; Gandhi, D. S. Bioorg. Med. Chem. 2010, 18, 1227. https://doi.org/10.1016/j.bmc.2009.12.037
- Mitrunen, K.; Sillanpaa, P.; Kataja, V.; Eskelinen, M.; Kosma, V.; Benhamou, S.; Uusitupa, M.; Hirvonen, A. Carcinogenesis 2001, 22, 827. https://doi.org/10.1093/carcin/22.5.827
- Mohan, N. P.; Hardik, N. J.; Chintan, R. P. J. Organomet. Chem. 2012, 701, 8. https://doi.org/10.1016/j.jorganchem.2011.11.022
- Bruker. SADABS, SAINT, and SMART. Bruker AXS Inc., Madison, Wisconsin, USA, 2002.
- Sheldrick, G. M. Acta Cryst. 2008, A64, 112.
- Han, X. L.; An, C. X.; Zhang, Z. H. Appl. Organometal. Chem. 2008, 22, 565. https://doi.org/10.1002/aoc.1440
- Tan, S. D.; Feng, S. S.; Zhang, H. M.; Zhu, M. L.; Yang, P. Acta Chim. Sinica 2005, 63, 1155.
- Sinha, S.; Srivastava, A. K.; Tripathi, C. M.; Pandey, O. P.; Sengupta, S. K. Bioinorg. Chem. Appl. 2007, 10, 1155.
- Singh, S.; Pandey, O. P.; Sengupta, S. K. J. Rare Earths. 2009, 27, 698. https://doi.org/10.1016/S1002-0721(08)60319-1
Cited by
- Synthesis, Crystal Structure and Characterization of Cu(II) and Cd(II) Coordination Compounds Based on Ligand 2-(3-(Pyridin-2-yl)-1H-pyrazol-1-yl)acetic Acid vol.35, pp.7, 2014, https://doi.org/10.5012/bkcs.2014.35.7.2086
- Ligand-Directed Assembly of Manganese and Zinc Complexes: Syntheses, Crystal Structures, and Bioactivities vol.641, pp.3-4, 2015, https://doi.org/10.1002/zaac.201400387
- Preparation of Copper Nanoparticles and Catalytic Properties for the Reduction of Aromatic Nitro Compounds vol.33, pp.12, 2012, https://doi.org/10.5012/bkcs.2012.33.12.4003
- Green Synthesis of Copper Nanoparticles Using Alchornea laxiflora Leaf Extract and Their Catalytic Application for Oxidative Desulphurization of Model Oil vol.42, pp.4, 2018, https://doi.org/10.1007/s40995-017-0404-9