DOI QR코드

DOI QR Code

Synthesis, Structure and Biological Properties of a Novel Copper (II) Supramolecular Compound Based on 1,2,4-Triazoles Derivatives

  • Qiu, Guang-Mei (Department of Chemistry and Chemical Engineering, School of Life Science and Bioengineering, Southwest Jiaotong University) ;
  • Wang, Cui-Juan (Department of Chemistry and Chemical Engineering, School of Life Science and Bioengineering, Southwest Jiaotong University) ;
  • Zhang, Ya-Jun (Department of Chemistry and Chemical Engineering, School of Life Science and Bioengineering, Southwest Jiaotong University) ;
  • Huang, Shuai (Department of Chemistry and Chemical Engineering, School of Life Science and Bioengineering, Southwest Jiaotong University) ;
  • Liu, Xiao-Lei (Department of Chemistry and Chemical Engineering, School of Life Science and Bioengineering, Southwest Jiaotong University) ;
  • Zhang, Bing-Jun (Department of Chemistry and Chemical Engineering, School of Life Science and Bioengineering, Southwest Jiaotong University) ;
  • Zhou, Xian-Li (Department of Chemistry and Chemical Engineering, School of Life Science and Bioengineering, Southwest Jiaotong University)
  • Received : 2012.03.31
  • Accepted : 2012.05.09
  • Published : 2012.08.20

Abstract

A novel mononuclear supramolecule of copper(II) has been synthesized with Ippyt ligand (Ippyt=3-(4'-imidazole phenyl)-5-(pyrid-2''-yl)-1,2,4-triazole) (1). Compound 1, namely [$Cu(Ippyt)_2(H_2O)_2$], has been characterized by single-crystal X-ray diffraction, IR spectrum, elemental analysis and thermogravimetric analysis. Structure determination reveals that the elongated-octahedral geometry is formed in the vicinity of the copper (II) atom being coordinated by four nitrogen atoms from two Ippyt ligands occupying the equatorial position and two oxygen atoms from two coordinated water molecules in the axial position, which together form the $N_4O_2$ donor set. Hydrogen bonding interactions between nitrogen and oxygen atoms result in the set up of a supramolecular network architecture. Biological properties including antibacterial activity and superoxide dismutase (SOD) mimetic activity of compound 1 have been investigated by agar diffusion method and the modified Marklund method, respectively. The results indicate that compound 1 exhibits a stronger antibacterial efficiency than the parent ligand and it also has a certain radical-scavenging activity.

Keywords

References

  1. Vazquez-Campos, S.; Crego-Calama, M.; Reinhoudt, D. N. Supramol. Chem. 2007, 19, 95. https://doi.org/10.1080/10610270600981716
  2. Li, D. S.; Wu, Y. P.; Zhang, P.; Du, M.; Zhao, J.; Li, C. P. Cryst. Growth Des. 2010, 10, 2037. https://doi.org/10.1021/cg100090h
  3. Sessler, J. L.; Lawrence, C. M.; Jayawickramarajah, J. Chem. Soc. Rev. 2007, 36, 314. https://doi.org/10.1039/b604119c
  4. Hembury, G. A.; Borovkov, V. V.; Inoue, Y. Chem. Rev. 2008, 108, 1. https://doi.org/10.1021/cr050005k
  5. Li, D. S.; Fu, F.; Zhao J.; Wu, Y. P.; Du, M.; Zou, K.; Dong, W. W.; Wang, Y. Y. Dalton Trans. 2010, 39, 11522. https://doi.org/10.1039/c0dt00900h
  6. Kitaura, R.; Seki, K.; Akiyama, G.; Kitagawa, S. Angew. Chem. Int. Ed. 2003, 42, 428. https://doi.org/10.1002/anie.200390130
  7. Ni, Z.; Yasser, A.; Antoun, T.; Yaghi, O. M. J. Am. Chem. Soc. 2005, 127, 12752. https://doi.org/10.1021/ja052055c
  8. Furukawa, H.; Yaghi, O. M. J. Am. Chem. Soc. 2009, 25, 8876.
  9. Murugesu, M.; Habrych, M.; Wernsdorfer, W.; Abboud, K. A.; Christou, G. J. Am. Chem. Soc. 2004, 126, 4766. https://doi.org/10.1021/ja0316824
  10. Glaser, T.; Heidemeier, M.; Weyhermüller, T.; Hoffmann, R. D.; Rupp, H.; Muller, P. Angew. Chem. Int. Ed. 2006, 45, 6033. https://doi.org/10.1002/anie.200600712
  11. Liu, X. T.; Wang, X. Y.; Zhang, W. X.; Cui, P.; Gao, S. Adv. Funct. Mater. 2006, 18, 2852. https://doi.org/10.1002/adma.200600253
  12. Wang, J. J.; Gou, L.; Hu, H. M.; Han, Z. X.; Li, D. S.; Xue, G. L.; Yang, M. L.; Shi, Q. Z. Cryst. Growth Des. 2007, 7, 1514. https://doi.org/10.1021/cg0703240
  13. Seo, J. S.; Whang, D.; Lee, H.; Jun, S. I.; Oh, J.; Young, J.; Kim, K. Nature 2000, 404, 982. https://doi.org/10.1038/35010088
  14. Dybtsev, D. N.; Nuzhdin, A. L.; Chun, H.; Bryliakov, K. P.; Konstantin, P.; Talsi, E. P.; Fedin, V. P.; Kim, K. Angew. Chem. Int. Ed. 2006, 45, 916. https://doi.org/10.1002/anie.200503023
  15. Wu, C. D.; Hu, A.; Zhang, L.; Lin, W. J. J. Am. Chem. Soc. 2005, 127, 8940. https://doi.org/10.1021/ja052431t
  16. Arpi, M.; Guillaume, P.; Maria, T. G. R.; Samiran, M. Polyhedron 2006, 25, 2550. https://doi.org/10.1016/j.poly.2006.03.021
  17. Jin, C. M.; Wu, L. Y.; Lu, H.; Xu, Y. Cryst. Growth Des. 2008, 8, 215. https://doi.org/10.1021/cg070143y
  18. Ma, Y.; Cheng, A. L.; Zhang, J. Y.; Yue, Q.; Gao, E. Q. Cryst. Growth Des. 2009, 9, 867. https://doi.org/10.1021/cg800506g
  19. Chang, Z.; Zhang, A. S.; Hu, T. L.; Bu, X. H. Cryst. Growth Des. 2009, 9, 4840. https://doi.org/10.1021/cg900659r
  20. Yuan, G.; Shao, K. Z.; Du, D. Y.; Wang, X. L.; Su, Z. M. Solid State Sci. 2011, 13, 1083. https://doi.org/10.1016/j.solidstatesciences.2011.01.014
  21. Su, C. Y.; Cai, Y. P.; Chen, C. L.; Smith, M. D.; Kaim, W.; Loye, H. C. J. Am. Chem. Soc. 2003, 125, 8595. https://doi.org/10.1021/ja034267k
  22. Ouellette, W.; Prosvirin, A. V.; Valeich, J.; Dunbar, K. R.; Zubieta, J. Inorg. Chem. 2007, 46, 9067. https://doi.org/10.1021/ic700790h
  23. Zhang, Q. Z.; Lu, C. Z.; Xia, C. K. Inorg. Chem. Commun. 2005, 8, 304. https://doi.org/10.1016/j.inoche.2005.01.003
  24. Mahata, P.; Ramya, K. V.; Natarajan, S. Chem. Eur. J. 2008, 14, 5839. https://doi.org/10.1002/chem.200800240
  25. Frisch, M.; Cahill, C. L. Cryst. Growth Des. 2008, 8, 2921. https://doi.org/10.1021/cg800029z
  26. Wen, L. L.; Lu, Z. D.; Ren, X. M.; Duan, C. Y.; Meng, Q. J.; Gao, S. Cryst. Growth Des. 2009, 9, 227. https://doi.org/10.1021/cg800329k
  27. Yao, Y. L.; Che, Y. X.; Zheng, J. M. Cryst. Growth Des. 2008, 8, 2299. https://doi.org/10.1021/cg7010106
  28. Liu, Y. L.; Kravtsov, V. C.; Eddaoudi, M. Angew. Chem. Int. Ed. 2008, 47, 8446. https://doi.org/10.1002/anie.200802680
  29. Zhang, X. C.; Xu, L.; Liu, W. G.; Liu, B. Bull. Korean Chem. Soc. 2011, 32, 1692. https://doi.org/10.5012/bkcs.2011.32.5.1692
  30. Yang, E. C.; Jia, F.; Wang, X. G.; Zhao, X. J. Bull. Korean Chem. Soc. 2008, 29, 2195. https://doi.org/10.5012/bkcs.2008.29.11.2195
  31. Oro, L. A.; Pinillos, M. T.; Tejel, C.; Foces-Foces, C. Chem. Commun. 1984, 1687.
  32. Guillem, A.; Leoní, A. B.; Olivier, R.; Patrick, G. Coord. Chem. Rev. 2011, 255, 485. https://doi.org/10.1016/j.ccr.2010.10.038
  33. Ouellette, W.; Jones, S.; Zubieta, J. Cryst. Eng. Comm. 2011, 13, 4457. https://doi.org/10.1039/c0ce00919a
  34. Liu, K.; Shi, W.; Cheng, P. Dalton Trans. 2011, 40, 8475. https://doi.org/10.1039/c0dt01578d
  35. Yi, L.; Ding, B.; Zhao, B.; Cheng, P.; Liao, D. Z.; Yan, S. P.; Jiang, Z. H. Inorg. Chem. 2004, 43, 33. https://doi.org/10.1021/ic0348244
  36. Su, C. Y.; Goforth, A. M.; Smith, M. D.; Pellechia, P. J.; zur Loye, H. C. J. Am. Chem. Soc. 2004, 126, 3576. https://doi.org/10.1021/ja039022m
  37. Fu, F.; Li, D. S.; Gao, X. M.; Du, M.; Wu, Y. P.; Zhang, X. N.; Meng, C. X. Cryst. Eng. Comm. 2010, 12, 1227. https://doi.org/10.1039/b913861g
  38. Holla, B. S.; Poorjary, N. K.; Rao, S. B.; Shivananda, M. K. Eur. J. Med. Chem. 2002, 37, 511. https://doi.org/10.1016/S0223-5234(02)01358-2
  39. Holla, B. S.; Akberali, P. M.; Shivananda, M. K. II Farmaco. 2001, 56, 919. https://doi.org/10.1016/S0014-827X(01)01124-7
  40. Genin, M. J.; Allwine, D. A.; Anderson, D. J.; Barbachyn, M. R.; Emmert, D. E.; Garmon, S. A.; Graber, D. R.; Grega, K. C.; Hester, J. B.; Hutchinson, D. K.; Morris, J.; Reischer, R. J.; Ford, C. W.; Zurenko, G. E.; Hamel, J. C.; Schaadt, R. D.; Stapert, D.; Yagi, B. H. J. Med. Chem. 2000, 43, 953. https://doi.org/10.1021/jm990373e
  41. Hakan, B.; Nesrin, K.; Deniz, S.; Ahmet, D.; Sengul, A. K.; Neslihan, D. Molecules 2010, 15, 2427. https://doi.org/10.3390/molecules15042427
  42. Tainer, J. A.; Getzoff, E. D.; Richardson, J. S.; Richardson, D. C. Nature 1983, 306, 284. https://doi.org/10.1038/306284a0
  43. Kremer, E.; Facchin, G.; Estévez, E.; Alborés, P.; Baran, E. J.; Ellena, J.; Torre, M. H. Inorg. Biochem. 2006, 100, 1167. https://doi.org/10.1016/j.jinorgbio.2006.01.042
  44. Jitsukawa, K.; Harata, M.; Arii, H.; Sakurai, H.; Masuda, H. Inorg. Chim. Acta 2001, 324, 108. https://doi.org/10.1016/S0020-1693(01)00567-9
  45. Zhou, Y. H.; Fu, H.; Zhao, W. X.; Chen, W. L.; Su, C. Y.; Sun, H. Z.; Ji, L. N.; Mao, Z. W. Inorg. Chem. 2007, 46, 734. https://doi.org/10.1021/ic061541d
  46. Bonomo, R. P.; Allessandro, F. D.; Grasso, G.; Impellizzeri, G.; Pappalardo, G.; Rizzarelli, E.; Tabbí, G. Inorg. Chim. Acta 2008, 361, 1705. https://doi.org/10.1016/j.ica.2007.01.021
  47. Balasubramanian, V.; Ezhevskaya, M.; Moons, H.; Neuburger, M.; Cristescu, C.; Doorslaer, S. V.; Palivan, C. Phys. Chem. Chem. Phys. 2009, 11, 6778. https://doi.org/10.1039/b905593b
  48. Patel, R. N.; Shukla, K. K.; Singh, A.; Choudhary, S. M.; Chauhan, U. K.; Dwivedi, S. Inorg. Chim. Acta 2009, 362, 4891. https://doi.org/10.1016/j.ica.2009.07.037
  49. Patel, M. N.; Parmar, P. A.; Gandhi, D. S. Bioorg. Med. Chem. 2010, 18, 1227. https://doi.org/10.1016/j.bmc.2009.12.037
  50. Mitrunen, K.; Sillanpaa, P.; Kataja, V.; Eskelinen, M.; Kosma, V.; Benhamou, S.; Uusitupa, M.; Hirvonen, A. Carcinogenesis 2001, 22, 827. https://doi.org/10.1093/carcin/22.5.827
  51. Mohan, N. P.; Hardik, N. J.; Chintan, R. P. J. Organomet. Chem. 2012, 701, 8. https://doi.org/10.1016/j.jorganchem.2011.11.022
  52. Bruker. SADABS, SAINT, and SMART. Bruker AXS Inc., Madison, Wisconsin, USA, 2002.
  53. Sheldrick, G. M. Acta Cryst. 2008, A64, 112.
  54. Han, X. L.; An, C. X.; Zhang, Z. H. Appl. Organometal. Chem. 2008, 22, 565. https://doi.org/10.1002/aoc.1440
  55. Tan, S. D.; Feng, S. S.; Zhang, H. M.; Zhu, M. L.; Yang, P. Acta Chim. Sinica 2005, 63, 1155.
  56. Sinha, S.; Srivastava, A. K.; Tripathi, C. M.; Pandey, O. P.; Sengupta, S. K. Bioinorg. Chem. Appl. 2007, 10, 1155.
  57. Singh, S.; Pandey, O. P.; Sengupta, S. K. J. Rare Earths. 2009, 27, 698. https://doi.org/10.1016/S1002-0721(08)60319-1

Cited by

  1. Synthesis, Crystal Structure and Characterization of Cu(II) and Cd(II) Coordination Compounds Based on Ligand 2-(3-(Pyridin-2-yl)-1H-pyrazol-1-yl)acetic Acid vol.35, pp.7, 2014, https://doi.org/10.5012/bkcs.2014.35.7.2086
  2. Ligand-Directed Assembly of Manganese and Zinc Complexes: Syntheses, Crystal Structures, and Bioactivities vol.641, pp.3-4, 2015, https://doi.org/10.1002/zaac.201400387
  3. Preparation of Copper Nanoparticles and Catalytic Properties for the Reduction of Aromatic Nitro Compounds vol.33, pp.12, 2012, https://doi.org/10.5012/bkcs.2012.33.12.4003
  4. Green Synthesis of Copper Nanoparticles Using Alchornea laxiflora Leaf Extract and Their Catalytic Application for Oxidative Desulphurization of Model Oil vol.42, pp.4, 2018, https://doi.org/10.1007/s40995-017-0404-9