DOI QR코드

DOI QR Code

Lipofectamine-2000 Assisted Magnetofection to Fibroblast Cells Using Polyethyleneimine-Fe3O4@SiO2 Nanoparticles

  • Jang, Eue-Soon (Department of Applied Chemistry, Kumoh National Institute of Technology) ;
  • Park, Kyeong-Soon (College of Pharmacy, Seoul National University)
  • Received : 2012.04.09
  • Accepted : 2012.05.05
  • Published : 2012.08.20

Abstract

We successfully synthesized $Fe_3O_4@SiO_2$ nanoparticles with ultrathin silica layer of $1.0{\pm}0.5$ nm that polyethyleneimine (PEI) with low molecular weight of 2.0-4.0 kDa was covalently conjugated with the resulting $Fe_3O_4@SiO_2$ nanoparticles by silane coupling reaction. The PEI-$Fe_3O_4@SiO_2$ nanoparticles were further used as gene delivery vector for a human fibroblast cell (IMR-90) line. Gene transfection efficiency of the PEI-$Fe_3O_4@SiO_2$ complexes did not increase remarkably after magnetofection; however, the addition of Lipofectamine 2000 significantly increased the transfection efficiency of the PEI-$Fe_3O_4@SiO_2$ complexes. We believe that the present approach could be utilized for magnetofection as alternative to $Fe_3O_4$ nanoparticles conjugated with the PEI of high molecular weight thanks to its relatively low cytotoxicity and high transfection efficiency.

Keywords

References

  1. Scherer, F.; Anton, M.; Schillinger, U.; Henke, J.; Bergemann, C.; Kruger, A.; Gänsbacher, B.; Plank, C. Gene Therapy 2002, 9, 102-109. https://doi.org/10.1038/sj.gt.3301624
  2. Plank, C.; Schillinger, U.; Scherer, F.; Bergemann, C.; Remy, J.- S.; Krotz, F.; Anton, M.; Lausier, J.; Rosenecker, J. Biol. Chem. 2003, 384, 737-747.
  3. Mykhaylyk, O.; Antequera, Y. S.; Vlaskou, D.; Plank, C. Nature Protoc. 2007, 2, 2391-2411. https://doi.org/10.1038/nprot.2007.352
  4. Cho, Y.-S.; Yoon, T.-J.; Jang, E.-S.; Hong, K. S.; Lee, S. Y.; Kim, C.; Park, Y.-J.; Kim, G.-C.; Yi, K. Chang, Cancer Lett. 2010, 299, 63-71. https://doi.org/10.1016/j.canlet.2010.08.004
  5. Bulte, J. W. M.; Douglas, T.; Witwer, B.; Zhang, S.-C.; Strable, E.; Lewis, B. K.; Zywicke, H.; Miller, B.; van Gelderen, P.; Moskowitz, B. M.; Duncan, I. D.; Frank, J. A. Nature Biotech. 2001, 19, 1141- 1147. https://doi.org/10.1038/nbt1201-1141
  6. Lu, C.-W.; Hung, Y.; Hsiao, J.-K.; Yao, M.; Chung, T.-H.; Lin, Y.- S.; Wu, S.-H.; Hsu, S.-C.; Liu, H.-M.; Mou, C.-Y.; Yang, C.-S.; Huang, D.-M.; Chen, Y.-C. Nano Lett. 2007, 7, 149-154. https://doi.org/10.1021/nl0624263
  7. Bible, E.; Dell'Acqua, F.; Solanky, B.; Balducci, A.; Crapo, P. M.; Badylak, S. F.; Ahrens, E. T.; Modo, M. Biomaterials 2012, 33, 2858-2871. https://doi.org/10.1016/j.biomaterials.2011.12.033
  8. McBain, S. C.; Yiu, H. H. P.; Haj, A. E.; Dobson, J. J. Mater. Chem. 2007, 17, 2561-2565. https://doi.org/10.1039/b617402g
  9. Chertok, B.; David, A. E.; Yang, V. C. Biomaterials 2010, 31, 6317-6324. https://doi.org/10.1016/j.biomaterials.2010.04.043
  10. Plank, C.; Zelphati, O.; Mykhaylyk, O. Adv. Drug Del. Rev. 2011, 63, 1300-1331. https://doi.org/10.1016/j.addr.2011.08.002
  11. Huth, S.; Lausier, J.; Gersting, S. W.; Rudolph, C.; Plank, C.; Welsch, U.; Rosenecker, J. J. Gene Med. 2004, 6, 923-936. https://doi.org/10.1002/jgm.577
  12. Yiu, H. H. P.; McBain, S. C.; Lethbridge, Z. A. D.; Lees, M. R.; Dobson, J. J. Biomed. Mater. Res. Part A 2009, 92A, 386-392.
  13. Wang, X.; Zhou, L.; Ma, Y.; Li, X.; Gu, H. Nano Res. 2009, 2, 365-372. https://doi.org/10.1007/s12274-009-9035-6
  14. Lee, C. H.; Kim, J.-H.; Lee, H. J.; Jeon, K.; Lim, H.; Choi, H. Y.; Lee, E.-R.; Park, S. H.; Park, J.-Y.; Hong, S.; Kim, S.; Cho, S.-G. Biomaterials 2011, 32, 6683-6691. https://doi.org/10.1016/j.biomaterials.2011.05.070
  15. Neu, M.; Fischer, D.; Kissel, T. J. Gene Med. 2005, 7, 992-1009. https://doi.org/10.1002/jgm.773
  16. Park, M. R.; Kim, H. W.; Hwang, C. S.; Han, K. O.; Choi, Y. J.; Song, S. C. J. Gene Med. 2008, 10, 198-207. https://doi.org/10.1002/jgm.1139
  17. Xia, T.; Kovochich, M.; Liong, M.; Meng, H.; Kabehie, S.; George, S.; Zink, J. I.; Nel, A. E. ACS Nano 2009, 3, 3273-3286. https://doi.org/10.1021/nn900918w
  18. Bieber, T.; Meissner, W.; Kostin, S.; Niemann, A.; Elsasser, H. P. J. Controlled Release 2002, 82, 441-454. https://doi.org/10.1016/S0168-3659(02)00129-3
  19. Merdan, T.; Kunath, K.; Fischer, D.; Kopecek, J.; Kissel, T. Pharm. Res. 2002, 19, 140-146. https://doi.org/10.1023/A:1014212630566
  20. Moghimi, S. M.; Symonds, P.; Murray, J. C.; Hunter, A. C.; Debska, G.; Szewczyk, A. Mol. Therapy 2005, 11, 990-995. https://doi.org/10.1016/j.ymthe.2005.02.010
  21. Zintchenko, A.; Philipp, A.; Dehshahri, A.; Wagner, E. Bioconjugate Chem. 2008, 19, 1448-1455. https://doi.org/10.1021/bc800065f
  22. Kunath, K.; von Harpe, A.; Fischer, D.; Petersen, H.; Bickel, U.; Voigt, K.; Kissel, T. J. Controlled Release 2003, 89, 113-125. https://doi.org/10.1016/S0168-3659(03)00076-2
  23. Wang, X.; Zhou, L.; Ma, Y.; Gu, H. IEEE Transactions on Nanotech. 2009, 8, 142-147. https://doi.org/10.1109/TNANO.2009.2013946
  24. Cha, E.-J.; Jang, E.-S.; Sun, I.-C.; Lee, I. J.; Ko, J. H.; Kim, Y. I. J. Controlled Release 2011, 155, 152-158. https://doi.org/10.1016/j.jconrel.2011.07.019
  25. Yi, D. K.; Lee, S. S.; Papaefthymiou, G. C.; Ying, J. Y. Chem. Mater. 2006, 18, 614-619. https://doi.org/10.1021/cm0512979
  26. Yang, Y.; Jing, L.; Yu, X.; Yan, D.; Gao, M. Chem. Mater. 2007, 19, 4123-4128. https://doi.org/10.1021/cm070798m
  27. Koole, R.; van Schooneveld, M. M.; Hilhort, J.; Donega, C. M.; Hart, D. C.; van Blaaderen, A.; Vanmaekelbergh, D.; Meijerink, A. Chem. Mater. 2008, 20, 2503-2512. https://doi.org/10.1021/cm703348y
  28. Huang, M.; Chen, Z.; Hu, S.; Jia, F.; Li, Z.; Hoyt, G.; Robbins, R. C.; Kay, M. A.; Wu, J. C. Circulation 2009, 120, S230-S237. https://doi.org/10.1161/CIRCULATIONAHA.108.841155
  29. Han, Y.; Jiang, J.; Lee, S. S.; Ying, J. Y. Langmuir 2008, 24, 5842- 5848. https://doi.org/10.1021/la703440p
  30. Kim, J.; Kim, H. S.; Lee, N.; Kim, T.; Kim, H.; Yu, T.; Song, I. C.; Moon, W. K.; Hyeon, T. Angew. Chem. Int. Ed. 2008, 120, 8566-8569. https://doi.org/10.1002/ange.200802469
  31. Liu, Q.; Xu, Z.; Finch, J. A.; Egerton, R. Chem. Mater. 1998, 10, 3936-3940. https://doi.org/10.1021/cm980370a
  32. Dove, P. M.; Craven, C. M. Geochim. et Cosmochim. Acta 2005, 69, 4963-4970. https://doi.org/10.1016/j.gca.2005.05.006
  33. Kobayashi, M.; Skarba, M.; Galletto, P.; Cakara, D.; Borkovec, M. J. Colloid Int. Sci. 2005, 292, 139-147. https://doi.org/10.1016/j.jcis.2005.05.093
  34. Hofland, H. E. J.; Shephard, L.; Sullivan, S. M. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 7305-7309. https://doi.org/10.1073/pnas.93.14.7305
  35. Floch, V.; Bolc'h, G. L.; Audrezet, M.-P.; Yaouanc, J.-J.; Clement, J.-C.; Abbayes, H.; Mercier, B.; Abgrall, J.-F.; Ferec, C. Blood Cells, Mol. & Die. 1997, 23, 69-87. https://doi.org/10.1006/bcmd.1997.0123
  36. Ma, Y.; Zhang, Z.; Wang, X.; Xia, W.; Gu, H. Int. J. Pharmaceutics 2911, 419, 247-254.
  37. Gary, D. J.; Puri, N.; Won, Y.-Y. J. Controlled Release 2007, 121, 64-73. https://doi.org/10.1016/j.jconrel.2007.05.021
  38. Chithrani, B. D.; Chan, W. C. W. Nano Lett. 2007, 7, 1542-1550. https://doi.org/10.1021/nl070363y