DOI QR코드

DOI QR Code

Effect of Polymer Characteristics on the Thermal Stability of Retinol Encapsulated in Aliphatic Polyester Nanoparticles

  • Cho, Eun-Chul (Department of Chemical Engineering, Division of Chemical and Bioengineering, Hanyang University)
  • Received : 2012.03.24
  • Accepted : 2012.05.03
  • Published : 2012.08.20

Abstract

The present study investigates how the thermal stability of retinol (vitamin A) encapsulated in polyester nanoparticles is influenced by the types of polyester used for the nanoparticles. A variety of polyester-retinol nanoparticles were prepared with various polyesters like: poly(ethylene adipate), PEA; poly(butylene adipate), PBA; poly(hexamethylene adipate), PHMA; and three polycaprolactones, PCL, of different molecular weights ($M_n$ ~10, 40, and 80K). The chemical stability of retinol in these nanoparticles, monitored in an aqueous solution at $25^{\circ}C$ and $40^{\circ}C$ for 4 weeks, was high in the following order of the nanoparticles prepared with PHMA > PCL 40K > PCL 10K > PCL 80K > PBA~PEA at $25^{\circ}C$ and PCL 10K > PCL 40K > PHMA > PCL 80K > PEA > PBA at $40^{\circ}C$. More importantly, this study has also found that the thermal stability of the retinol in the nanoparticles was closely connected with the melting temperatures of polyesters and polyester nanoparticles. The results were further discussed with possible factors - such as sample preparation condition (or history) and miscibility between the polyesters and retinol - affecting $T_m$ of the polyesters and the nanoparticles.

Keywords

References

  1. Vert, M. Biomacromolecules 2005, 6, 538. https://doi.org/10.1021/bm0494702
  2. Uhrich, K. E.; Cannizzaro, S. M.; Langer, R. S.; Shakesheff, K. M. Chem. Rev. 1999, 99, 3181. https://doi.org/10.1021/cr940351u
  3. Albertsson, A.-C.; Varma, I. K. Adv. Polym. Sci. 2002, 157, 1. https://doi.org/10.1007/3-540-45734-8_1
  4. Langer, R.; Vacanti, J. P. Science 1993, 260, 920. https://doi.org/10.1126/science.8493529
  5. Hutmacher, D. W. Biomaterials 2000, 21, 2529. https://doi.org/10.1016/S0142-9612(00)00121-6
  6. Holland, S. J.; Tighe, B. J.; Gould, P. L. J. Control. Release 1986, 4, 155. https://doi.org/10.1016/0168-3659(86)90001-5
  7. Vert, M.; Li, S. M.; Spenlehauer, G.; Guerin, P. J. Mater. Sci.: Mater. Med. 1992, 3, 432. https://doi.org/10.1007/BF00701240
  8. Ikada, Y.; Tsuji, H. Macromol. Rapid Commun. 2000, 21, 117. https://doi.org/10.1002/(SICI)1521-3927(20000201)21:3<117::AID-MARC117>3.0.CO;2-X
  9. Pitt, C. G.; Gratzl, M. M.; Kimmel, G. L.; Surles, J.; Schindler, A. Biomaterials 1981, 2, 215. https://doi.org/10.1016/0142-9612(81)90060-0
  10. Wang, H. T.; Palmer, H.; Linhardt, R. J.; Flanagan, D. R.; Schmitt, E. Biomatenals 1990, 11, 679.
  11. Tserki, V.; Matzinos, P.; Pavlidou, E.; Vachliotis, D.; Panayiotou, C. Polym. Degradation Stability 2006, 91, 367. https://doi.org/10.1016/j.polymdegradstab.2005.04.035
  12. Maeda, H.; Wu, J.; Sawa, T.; Matsumura, Y.; Hori, K. J. Control. Release 2000, 65, 271. https://doi.org/10.1016/S0168-3659(99)00248-5
  13. McCarthy, J. R.; Perez, J. M.; Br1uckner, C.; Weissleder, R. Nano Lett. 2005, 5, 2552. https://doi.org/10.1021/nl0519229
  14. Santra, S.; Kaittanis, C.; Perez, J. M. Langmuir 2010, 26, 5364. https://doi.org/10.1021/la9037843
  15. Paleos, C. M.; Tsiourvas, D.; Sideratou, Z.; Tziveleka, L.-A. Expert Opin. Drug Deliv. 2010, 7, 1387. https://doi.org/10.1517/17425247.2010.534981
  16. Hans, M. L.; Lowman, A. M. Curr. Opin. Solid State Mater. Sci. 2002, 6, 319. https://doi.org/10.1016/S1359-0286(02)00117-1
  17. Cameron, D. J. A.; Shaver, M. P. Chem. Soc. Rev. 2011, 40, 1761. https://doi.org/10.1039/c0cs00091d
  18. Khanna, K.; Varshney, S.; Kakkar, A. Polym. Chem. 2010, 1, 1171. https://doi.org/10.1039/c0py00082e
  19. Corbin, P. S.; Webb, M. P.; McAlvin, J. E.; Fraser, C. L. Biomacromolecules 2001, 2, 223. https://doi.org/10.1021/bm005621z
  20. Ganta, S.; Devalapally, H.; Shahiwala, A.; Amiji, M. J. Control. Release 2008, 126, 187. https://doi.org/10.1016/j.jconrel.2007.12.017
  21. De Jesus, O. L. P.; Ihre, H. R.; Gagne, L.; Frechet, J. M. J.; Szoka, F. C., Jr. Bioconjugate Chem. 2002, 13, 453. https://doi.org/10.1021/bc010103m
  22. Asker, A.; Habib, M. J. Parenter. Sci. Technol. 1988, 42, 153.
  23. Beijnen, J.; Houwen, O. van der.; Underberg, W. J. M. Int. J. Pharm. 1986, 32, 123. https://doi.org/10.1016/0378-5173(86)90170-5
  24. Janssen, M.; Crommelin, D.; Storm, G.; Hulshoff, A. Int. J. Pharm. 1985, 23, 1.
  25. Wasserman, K.; Bundgaard, H. Int. J. Pharm. 1983, 14, 73. https://doi.org/10.1016/0378-5173(83)90115-1
  26. ldson, B. Cosmet. Toilet 1993, 108, 79.
  27. Austria, R.; Semenzato, A.; Bettero, A. J. Pharm. Biomed. Anal. 1997, 15, 795. https://doi.org/10.1016/S0731-7085(96)01904-8
  28. Duester, G. Cell 2008, 134, 921. https://doi.org/10.1016/j.cell.2008.09.002
  29. Semba, R. D. Nutrition 1999, 129, 783.
  30. Verhoeven, D. T.; Assen, N.; Goldbohm, R. A.; Dorant, E.; van't Veer, P.; Sturmans, F.; Hermus, R. J.; van den Brandt, P. A. Br. J. Cancer. 1997, 75, 149. https://doi.org/10.1038/bjc.1997.25
  31. Keys, S. A.; Zimmerman, W. F. Exp. Eye Res. 1999, 68, 693. https://doi.org/10.1006/exer.1999.0657
  32. Bellemere, G.; Stamatas, G. N.; Bruere, V.; Bertin, C.; Issachar, N.; Oddos, T. Skin Pharmacol. Physiol. 2009, 22, 200. https://doi.org/10.1159/000231525
  33. Kang, H. H.; Cho, J. C.; Kim, J. S.; Lee, O. S. U.S. Patent US5980917, 1999.
  34. Moldenhauer, J.-P.; Regiert, M.; Wimmer, T. U.S. Patent US5985296, 1999.
  35. Metha, A. C.; Calvert, R. T. Pharm. J. 1987, 14, 214.
  36. Selek, H.; Unlu, N.; Orhan, M.; Irkec, M. Eur. J. Opthalmol. 2000, 10, 121.
  37. Cirpanli, Y.; Unlu, N.; Calis, S.; Hincal, A. A. J. Microencapsulation 2005, 22, 877. https://doi.org/10.1080/02652040500273878
  38. Ourique, A. F.; Melero, A.; Silva, C. B.; Schaefer, U. F.; Pohlmann, A. R.; Guterres, S. S.; Lehr, C.-M.; Kostka, K.-H.; Beck, R. C. R. Eur. J. Pharm. Biopharm. 2011, 79, 95.
  39. Ourique, A. F.; Pohlmann, A. R.; Cuterres, S. S.; Beck, R. C. R. Int. J. Pharm. 2008, 352, 1. https://doi.org/10.1016/j.ijpharm.2007.12.035
  40. Kwon, S. S.; Nam, Y. S.; Lee, J. S.; Ku, B. S.; Han, S. H.; Lee, J. Y.; Chang, I. S. Colloid Surf. A 2002, 210, 95. https://doi.org/10.1016/S0927-7757(02)00212-1
  41. Jeong, J.-C.; Lee, J.; Cho, K. J. Control. Release 2003, 92, 249. https://doi.org/10.1016/S0168-3659(03)00367-5
  42. Zweers, M. L. T.; Grijpma, D. W.; Engbers, G. H. M.; Feijen, J. J. Biomed. Mater. Res. B 2003, 66B, 559. https://doi.org/10.1002/jbm.b.10046
  43. Konan, Y. N.; Gurny, R.; Allemann, E. Int. J. Pharm. 2002, 233, 239. https://doi.org/10.1016/S0378-5173(01)00944-9
  44. Li, Y.; Qi, X. R.; Maitani, Y.; Nagai, T. Nanotechnology 2009, 20, 055106. https://doi.org/10.1088/0957-4484/20/5/055106
  45. Jeong, Y.-I.; Song, J.-G.; Kang, S.-S.; Ryu, H.-H.; Lee, Y.-H.; Choi, C.; Shin, B.-A.; Kim, K.-K.; Ahn, K.-Y.; Jung, S. Int. J. Pharm. 2003, 25, 79.
  46. Kasuya, K.; Takagi, K.; Ishiwatari, S.; Yoshida, Y.; Doi, Y. Polym. Degradation Stability 1998, 59, 327. https://doi.org/10.1016/S0141-3910(97)00155-9
  47. Doi, Y.; Kasuya, K.; Abe, H.; Koyama, N.; Ishiwatari, S.; Takagi, K.; Yoshida, Y. Polym. Degradation Stability 1996, 51, 281. https://doi.org/10.1016/0141-3910(95)00178-6
  48. Nishi, T.; Wang, T. T. Macromolecules 1975, 8, 909. https://doi.org/10.1021/ma60048a040
  49. Shioma, T. H.; Tsukada, H.; Takeshita, K.; Takenaka, Y.; Tezuka, Y. Polymer 2001, 42, 4997. https://doi.org/10.1016/S0032-3861(00)00894-6
  50. Small, P. A. J. Appl. Chem. 1953, 3, 71.
  51. Rosen, S. L. Fundamental Principles of Polymeric Materials, 2nd ed.; Wiley and Sons: Singapore, 1993; p 87.

Cited by

  1. Internal Structure and Size Matters of Polyester Nanoparticles Encapsulating a Bioactive Hydrophobic Drug for the Prevention of Drug Crystals in Aqueous Systems vol.51, pp.34, 2012, https://doi.org/10.1021/ie300573q
  2. A heat-stable microparticle platform for oral micronutrient delivery vol.11, pp.518, 2012, https://doi.org/10.1126/scitranslmed.aaw3680