DOI QR코드

DOI QR Code

Effect of Substrate Temperature on Electrical and Optical Properties of Al Doped ZnO Thin Films by Continuous Composition Spread

  • Jung, Keun (Electronic Materials Research Center, Korea Institute of Science and Technology) ;
  • Lee, Jin-Ju (Electronic Materials Research Center, Korea Institute of Science and Technology) ;
  • Choi, Won-Kook (Interface Control Research Center, Korea Institute of Science and Technology) ;
  • Yoon, Seok-Jin (Electronic Materials Research Center, Korea Institute of Science and Technology) ;
  • Choi, Ji-Won (Electronic Materials Research Center, Korea Institute of Science and Technology)
  • Received : 2012.06.12
  • Accepted : 2012.07.10
  • Published : 2012.07.31

Abstract

Al doped ZnO(AZO) thin films were deposited at different substrate temperatures by a continuous composition spread(CCS) method. Various compositions of Al doped ZnO thin films deposited at substrate temperatures between 0 and $250^{\circ}C$ were explored to find excellent electrical and optical properties. The AZO thin film deposited at $100^{\circ}C$ had the lowest resistivity, $9{\times}10^{-4}{\Omega}$ cm and its average transmittance at the 400 to 700 nm wavelength region was 92 %. Optimized composition of the AZO thin film which had the lowest resistivity and high transmittance was 3.13 wt% Al doped ZnO.

Keywords

References

  1. S. Major, S. Kumar, M. Bhatnagar, and K. L. Chopra, "Effect of hydrogen plasma treatment on transparent conducting oxides", Appl Phys Lett., vol. 49, pp. 394-396, 1986. https://doi.org/10.1063/1.97598
  2. G. H Kim, B. D. Ahn, H. S. Shin, W. H. Jeong, H. J. Kim, and H. J. Kim, "Effect of indium composition ratio on solution-processed nanocrystalline InGaZnO thin film transistors", Appl Phys Lett., vol. 94, pp. 233501.1-233501.3, 2009.
  3. H. L. Hartnagel, A. L. Dawar, A. K. Jain, and C. Jagadish, Semiconducting Transparent Thin Film, Bristol, U.K, 1995.
  4. S. Lee, H. Kim, D. -J. Yun, S. -W. Rhee, and K. Yong, "Resistive switching characteristics of ZnO thin film grown on stainless steel for flexible nonvolatile memory devices", Appl Phys Lett., vol. 95, pp. 262113.1-262113.3, 2009.
  5. T. Minami, H. Nanto, S. Shooji, and S. Takata, "The stability of aluminium-doped ZnO transparent electrodes fabricated by sputtering", Thin Solid Film, vol. 135, pp. 183-187, 1986. https://doi.org/10.1016/0040-6090(86)90125-2
  6. Y. H. Kim, K. S. Lee, T. S. Lee, B. Cheong, T. -Y. Seong, and W. M. Kim, "Effects of substrate temperature and Zn addition on the properties of Aldoped ZnO films prepared by magnetron sputtering", Appl Surf Sci., vol. 255, pp. 7251-7256, 2009. https://doi.org/10.1016/j.apsusc.2009.03.075
  7. A. Suzuki, M. Nakamura, R. Michihata, T. Aoki, T. Matsushita, and M. Okuda, "Ultrathin Al-doped transparent conducting zinc oxide films fabricated by pulsed laser deposition", Thin Solid Film, vol. 517, pp. 1478-1481, 2008. https://doi.org/10.1016/j.tsf.2008.09.024
  8. B. -Z. Dong, H. Hu, G. -J. Fang, X. -Z. Zhao, D. -Y. Zheng, and Y. -P. Sun, "Comprehensive investigation of structural, electrical, and optical properties for ZnO:Al films deposited at different substrate temperature and oxygen ambient", J. Appl. Phys., vol. 103, pp. 073711-073718, 2008. https://doi.org/10.1063/1.2901024
  9. R. B. van Dover, L. F. Schneemeyer, and R. M. Fleming, "Discovery of a useful thin-film dielectric using a composition-spread approach", Nature, vol. 392, pp. 162-164, 1998. https://doi.org/10.1038/32381
  10. S. Yaginuma, K. Itaka, Y. Matsumoto, T. Ohnishi, M. Lippmaa, T. Nagata, T. Chikyowe, and H. Koinuma, "Composition-spread thin films of pentacene and 6,13-pentacenequinone fabricated by using continuous-wave laser molecular beam epitaxy", Appl Surf Sci., vol. 254, pp. 2336-2341, 2008. https://doi.org/10.1016/j.apsusc.2007.09.052
  11. I. Ohkubo, H. M. Christen, P. Khalifah, S. Sathyamurthy, H. Y. Zhai, C. M. Rouleau, D. G. Mandrus, and D. H. Lowndes, "Continuous composition-spread thin films of transition metal oxides by pulsed-laser deposition", Appl Surf Sci., vol. 223, pp. 35-38, 2004. https://doi.org/10.1016/S0169-4332(03)00914-0
  12. R. B. van Dover, L. F. Schneemeyer, R. M. Fleming, and H. A. Huggins, "A high-throughput search for electronic materials-thin-film dielectrics", Biotechnology and Bioengineering, vol. 61, pp. 217-225, 1999. https://doi.org/10.1002/(SICI)1097-0290(1998)61:4<217::AID-CC4>3.0.CO;2-L
  13. X.-D. Xiang and I. Takeuchi, ed., Combinatorial Materials Synthesis, Marcel Dekker, Inc., New York, pp. 34-54, 2003.
  14. P. A. Sanchez, T. Sintes, J. H. E. Cartwright, and O. Piro, "Influence of microstructure on the transitions between mesoscopic thin-film morphologies in ballistic-diffusive models", Phys. Rev. E, vol. 81, pp. 011140-011150, 2010. https://doi.org/10.1103/PhysRevE.81.011140
  15. J.A. Sans, J.F. Sanchez-Royo, V. Barber, M.A. Hernandez-Fenollosa, B. Mari, and A. Segura, "Correlation between optical and transport properties of Ga-doped ZnO thin films prepared by pulsed laser deposition", Superlattices and Microstructures, vol. 39, pp. 282-290, 2006. https://doi.org/10.1016/j.spmi.2005.08.050
  16. H. T. Cao, Z. L. Pei, J. Gong, C. Sun, R. F. Juang, and L. S. Wen, "Transparent conductive Al and Mn doped ZnO thin films prepared by DC reactive magnetron sputtering", Surf. Coat. Technol., vol. 184, pp. 84-92, 2004. https://doi.org/10.1016/j.surfcoat.2003.09.046
  17. E. Burstein, "Anomalous optical absorption limit in InSb", Phys. Rev., vol. 93, pp. 632-633, 1954. https://doi.org/10.1103/PhysRev.93.632
  18. T. S. Moss, "The Interpretation of the Properties of Indium Antimonide", Proc. Phys. Soc. B, vol. 67, pp. 775-782, 1954. https://doi.org/10.1088/0370-1301/67/10/306