References
- Sacks, E., Milenkovic, V. and Kyung, M.-H., 2011, Controlled Linear Perturbation, Computer-Aided Design, 43(10), pp. 1250-1257. https://doi.org/10.1016/j.cad.2011.06.015
- Abrams, S. and Allen, P., 2000, Computing Swept Volums, Journal of Visualization and Computer Animation, 11, pp. 69-82. https://doi.org/10.1002/1099-1778(200005)11:2<69::AID-VIS219>3.0.CO;2-7
- Tilove, R.B. and Requicha, A., 1980, Closure of Boolean Operations on Geometric Entities, Computer-Aided Design, 12(5), pp. 219-220. https://doi.org/10.1016/0010-4485(80)90025-1
- Requicha, A., 1985, Boolean Operations in Solid Modeling: Boundary Evaluation and Merging Algorithms, Proc. IEEE, pp. 30-44.
- Pach, J. and Sharir, M., 1989, The Upper Envelope of Piecewise Linear Functions and the Boundary of a Region Enclosed by Convex Plates: Combinatorial Analysis, Discrete & Computational Geometry, 4, pp. 291-309. https://doi.org/10.1007/BF02187732
- Arnovo, B. and Sharir, M., 1990, Triangles in Space or Building (and analyzing) Castles in the Air, Combinatorica, 10(2), pp. 137-173. https://doi.org/10.1007/BF02123007
- Halperin, D., 2002, Robust Geometric Computing in Motion", The Journal of Robotics Research, 21(3), pp. 219-232. https://doi.org/10.1177/027836402320556412
- Pach, J. and Sharir, M., 2009, Combinatorial Geometry and Its Algorithmic Applications: The Alcala Lectures, AMS.
- de Berg, M., Guibas, L.J. and Halperin, D., 1994, Vertical Decomposition for Triangles in 3-space, Proc. the 10th Annu. ACM Symposium on Computational Geometry.
- de Berg, M., Dobrindt, K. and Schwarzkopf, O., 1994, On Lazy Randomized Incremental Construction, Discrete & Computational Geometry, 14(1), pp 261-286.
- Agarwal, P. and Sharir, M., 1998, Arrangements and Their Applications, Handbook of Computational Geometry, Elsevier Sience Publishers, pp. 49-119.
- Sharir, M., 2007, Arrangements in Geometry: Recent Advances and Challenges, Proc. the 15th annual European conference on Algorithms, Eilat, Isarael, pp. 12-16.
- Krishnamurthy, Sara McMains, S. and Haller, K., 2009, Accelerating Geometric Queries using the GPU, Proc. 2009 SIAM/ACM Joint Conference on Geometric and Physical Modeling, pp. 199-210.
- Li, W. and McMains, S., 2011, Voxelized Minkowski Sum Computation on the GPU with Robust Culling, Computer-Aided Design, 43(10), pp 1270-1283. https://doi.org/10.1016/j.cad.2011.06.022
- Halperin, D. and Shelton, C., 1998, A Perturbation Scheme for Spherical Arrangements with Application to Molecular Modeling, Computational Geometry: Theory and Applications, 10(4), pp. 273-288. https://doi.org/10.1016/S0925-7721(98)00014-5
- Halperin, D. and Leiserowitz, E., 2004, Controlled Perturbation for Arrangements of Circles, International Journal of Computational Geometry and Applications, 14(4), pp. 277-310. https://doi.org/10.1142/S0218195904001482
- Halperin, D. and Raab, S., 1999, Controlled Perturbation for Arrangements of Polyhedral Surfaces with Application to Swept Volumes, Proc. 15th Annual ACM Symposium on Computational Geometry, pp 163-172.
- Milenkovic, V. and Sacks, E., 2012, Adaptive-Precision Controlled Perturbation, submitted to Symposium on Computational Geometry.
- Kyung, M.-H., Keun, K.-J. and Choi, J.-J., 2011, Robust GPU-based Intersection Algorithm for a Large Triangle Set, Journal of Korea Computer Graphics, 17(3), pp. 9-20.
- Lozano-Perez, T., 1983, Spatial Planning: A Configuration Space Approach, IEEE Transactions on Computers, C-32(2), pp. 108-120. https://doi.org/10.1109/TC.1983.1676196
- Guibas, L.J., Ramshaw, L. and Stolfi, J., 1983, A Kinetic Framework for Computational Geometry, Proc. 24th Annu. IEEE Symposium on Foundation of Computer Science, pp. 100-111.
- Kaul, A. and O'Connor, M.A., 1993, Computing Minkowski Sums of Regular Polyhedra, Technical Report RC 18891(82557), IBM T. J. Watson Research Center, Yorktown Heights, N. Y..
- Laurent Fousse, Guillaume Hanrot, Vincent Lefevre, Patrick Pelissier, Paul Zimmermann, 2007, MPFR: A Multiple-Precision Binary Floating-Point Library With Correct Rounding, ACM Transactions on Mathematical Software, 33(2).