DOI QR코드

DOI QR Code

Development of CNT-dispersed Si3N4 Ceramics by Adding Lower Temperature Sintering Aids

  • Matsuoka, Mitsuaki (Graduate School of Environment and Information Sciences, Yokohama National University) ;
  • Yoshio, Sara (Graduate School of Environment and Information Sciences, Yokohama National University) ;
  • Tatami, Junichi (Graduate School of Environment and Information Sciences, Yokohama National University) ;
  • Wakihara, Toru (Graduate School of Environment and Information Sciences, Yokohama National University) ;
  • Komeya, Katsutoshi (Graduate School of Environment and Information Sciences, Yokohama National University) ;
  • Meguro, Takeshi (Graduate School of Environment and Information Sciences, Yokohama National University)
  • Received : 2012.05.22
  • Accepted : 2012.07.16
  • Published : 2012.07.31

Abstract

The study to give electrical conductivity by dispersing carbon nanotubes (CNT) into silicon nitride ($Si_3N_4$) ceramics has been carried out in recent years. However, the density and the strength of $Si_3N_4$ ceramics were degraded and CNTs disappeared after firing at high temperatures because CNTs prevent $Si_3N_4$ from densification and there is a possibility that CNTs react with $Si_3N_4$ or $SiO_2$. In order to suppress the reaction and the disappearance of CNTs, lower temperature densification is needed. In this study, $HfO_2$ and $TiO_2$ was added to $Si_3N_4-Y_2O_3-Al_2O_3$-AlN system to fabricate CNT-dispersed $Si_3N_4$ ceramics at lower temperatures. $HfO_2$ promotes the densification of $Si_3N_4$ and prevents CNT from disappearance. As a result, the sample by adding $HfO_2$ and $TiO_2$ fired at lower temperatures showed higher electrical conductivity and higher bending strength. It was also shown that the mechanical and electrical properties depended on the quantity of the added CNTs.

Keywords

References

  1. H. Kawamura and S. Yamamoto, "Improvement of Diesel Engine Startability by Ceramic Glow Plug Start System," SAE Paper, No. 830580 (1983).
  2. Y. Tajima, "Development of High Performance Silicon Nitride Ceramics and Their Applications," Mater. Res. Soc. Symp. Proc., 287 198-201 (1993).
  3. K. Komeya and H. Kotani, "Development of Ceramic Antifriction Bearing," JSAE Rev., 7 72-79 (1986).
  4. S. Iijima, "Helical Microtubules of Graphitic Carbon," Nature, 354 56-58 (1991). https://doi.org/10.1038/354056a0
  5. S. Rochie, "Carbon Nanotubes: Exceptional Mechanical and Electrical Properties," Ann. Chim. Sci. Mater., 25 529-32 (2000). https://doi.org/10.1016/S0151-9107(01)80005-2
  6. H. J. Dai, "Carbon Nanotubes: Opportunities and Challenges," Surf. Sci., 500 218-41 (2002). https://doi.org/10.1016/S0039-6028(01)01558-8
  7. J. Dusza, G. Bluganb, J. Morgielc, J. Kueblerb, F. Inamd, T. Peijsd, M. J. Reeced, and V. Puchya, "Hot Pressed and Spark Plasma Sintered Zirconia/carbon Nanofiber Composites," J. Eur. Ceram. Soc., 29 3177-84 (2009). https://doi.org/10.1016/j.jeurceramsoc.2009.05.030
  8. Cs. Balazsi, Z. Shen, Z. Konya, Zs. Kasztovszky, F. Weber, Z. Vertesy, L.P. Biro, I. Kiricsi, and P. Arato, "Processing of Carbon Nanotube Reinforced Silicon Nitride Composites by Spark Plasma Sintering," Compos. Sci. Tech., 65 727-33 (2004).
  9. Cs. Balazsi, F. S. Cinar, O. Addemir, F. Weber, and P. Arato, "Manufacture and Examination of $C/Si_3N_4$ Nanocomposites," J. Eur. Ceram. Soc., 24 3287-94 (2004). https://doi.org/10.1016/j.jeurceramsoc.2003.10.021
  10. M. Matsuoka, S. Yoshio, T. Yamakawa, J. Tatami, T. Wakihara, K. Komeya, and T. Meguro, "Development of CNT-$Si_3N_4$ Composites with High Strength and Electrical Conductivity by Adding $HfO_2$," Trans. MRS-J., 37 [1] 11-14 (2012).
  11. J. Tatami, T. Katashima, K. Komeya, T. Meguro, and T. Wakihara, "Electrically Conductive CNT-Dispersed Silicon Nitride Ceramics," J. Am. Ceram. Soc., 88 2889-93 (2005). https://doi.org/10.1111/j.1551-2916.2005.00539.x
  12. S. Yoshio, J. Tatami, T. Wakihara, K. Komeya, and T. Meguro, "Fabrication of Electrically Conductive $Si_3N_4$ Ceramics by Dispersion of Carbon Nanotubes," Key Eng. Mat., 403 19-22 (2009). https://doi.org/10.4028/www.scientific.net/KEM.403.19
  13. S. Yoshio, J. Tatami, T. Wakihara, T. Yamakawa, H. Nakano, K. Komeya, and T. Meguro, "Effect of CNT Quantity and Sintering Temperature on Electrical and Mechanical Properties of CNT-dispersed $Si_3N_4$ Ceramics," J. Ceram. Soc. Jpn, 119 [1] 70-75 (2011). https://doi.org/10.2109/jcersj2.119.70
  14. J. Tatami, M. Toyama, K. Noguchi, K. Komeya, T. Meguro, and M. Komatsu, "Effect of $TiO_2$ and AlN Additions on the Sintering Behavior of the $Si_3N_4-Y_2O_3-Al_2O_3$ System," Key Eng. Mat., 247 83-86 (2003). https://doi.org/10.4028/www.scientific.net/KEM.247.83
  15. H. Li, K. Komeya, J. Tatami, T. Meguro, Y. Chiba, and M. Komatsu, "Effect of $HfO_2$ Addition on Sintering of $Si_3N_4$," J. Ceram. Soc. Jpn, 109 [4] 342-46 (2001). https://doi.org/10.2109/jcersj.109.1268_342
  16. D. Horikawa, J. Tatami, T. Wakihara, K. Komeya, and T. Meguro, "Sintering Shrinkage Behavior and Mechanical Properties of $HfO_2-Added\;Si_3N_4$ Ceramics," Key Eng. Mat., 403 35-38 (2009). https://doi.org/10.4028/www.scientific.net/KEM.403.35
  17. S. Shimada and T. Sato, "Preparation and High Temperature Oxidation of SiC Compositionally Graded Graphite Coated with $HfO_2$," Carbon, 40 2469-75 (2002). https://doi.org/10.1016/S0008-6223(02)00159-8
  18. S. Shimada and T. Aketo,"High-Temperature Oxidation at $1500^{\circ}\;and\;1600^{\circ}C$ of SiC/Graphite Coated with Sol-Gel-Derived $HfO_2$," J. Am. Ceram. Soc., 88 [4] 845-49 (2005). https://doi.org/10.1111/j.1551-2916.2005.00202.x

Cited by

  1. Improvement of strength of carbon nanotube-dispersed Si3N4 ceramics by bead milling and adding lower-temperature sintering aids vol.2, pp.3, 2012, https://doi.org/10.1016/j.jascer.2014.02.005