DOI QR코드

DOI QR Code

Contamination Assessment of Water Quality and Stream Sediments Affected by Mine Drainage in the Sambo Mine Creek

삼보광산 수계 하천수질 및 퇴적토의 오염도 평가

  • 정구복 (농촌진흥청 국립농업과학원) ;
  • 권순익 (농촌진흥청 국립농업과학원) ;
  • 홍성창 (농촌진흥청 국립농업과학원) ;
  • 김민경 (농촌진흥청 국립농업과학원) ;
  • 채미진 (농촌진흥청 국립농업과학원) ;
  • 김원일 (농촌진흥청 국립농업과학원) ;
  • 이종식 (농촌진흥청 국립농업과학원) ;
  • 강기경 (농촌진흥청 국립농업과학원)
  • Received : 2012.06.13
  • Accepted : 2012.06.25
  • Published : 2012.06.30

Abstract

BACKGROUND: Mine drainage from metal mining districts is a well-recognized source of environmental contamination. Oxidation of metal sulfides in mines, mine dumps and tailing impoundments produces acidic, metal-rich waters that can contaminate the local surface water and soil. METHODS AND RESULTS: This experiment was carried out to investigate the pollution assessment of heavy metal on the water quality of mine drainage, paddy soils and sediment in lower watershed affected by mine drainage of the Sambo mine. The average concentrations of dissolved Cd (0.018~0.035 mg/L) in mine drainage discharged from the main waste rock dumps(WRD) was higher than the water quality standards (0.01 mg/L) for agricultural water in Korea. Also, the average concentrations of dissolved Zn, Fe and Mn were higher than those of recommended maximum concentrations (Zn 2.0, Fe 5.0, Mn 0.2 mg/L) of trace metal in irrigation water proposed by FAO (1994). The average contents of Pb and Zn in paddy soils was higher than those of standard level for soil contamination(Pb 200, Zn 300 mg/kg) in agricultural soil by Soil Environmental Conservation Act in Korea. Also, the concentrations of Cd, Pb and Zn in sediment were higher than those of standard level for soil contamination (Cd 10, Pb 400, Zn 600 mg/L) in waterway soil by Soil Environmental Conservation Act in Korea. The enrichment factor (EFc) of heavy metals in stream sediments were in the order as Cd>Pb>Zn> As>Cu>Cr>Ni. Also, the geoaccumulation index (Igeo) of heavy metals in stream sediments were in the order as Zn>Cd>Pb>Cu>As>Cr>Ni, specially, the geoaccumulation index (Igeo) of Zn (Igeo 3.1~6.2) were relatively higher than that of other metals in sediment. CONCLUSION(s): The results indicate that stream water and sediment were affected by mine drainage discharged from the Sambo mine at least to a distance of 1 km downstream (SN-1, SN-2) of the mine water discharge point.

폐금속 광산에서 유출되는 광산배수로 인한 하류 수계의 환경오염 영향을 검토하기 위하여 삼보광산 하류 수계 내 하천수질, 퇴적토양 및 인근 논토양에 대한 중금속 오염도를 평가한 결과는 다음과 같다. 삼보광산 주변 광미댐 침출수의 Cd 평균 농도(0.018~0.035 mg/L)는 우리나라 농업용수 수질기준(0.01 mg/L)을 초과하였고, 미량성분 중 Zn, Fe 및 Mn 함량도 FAO의 관개용수 최대 권고치(Zn 2.0, Fe 5.0, Mn 0.2 mg/L)를 초과 하였다. 광산 하류 논토양의 Pb, Zn 평균함량은 우리나라 농경지의 토양오염 우려기준(Pb 200, Zn 300 mg/kg)을 초과 하였고, 중금속 오염지수 평균치는 상리가 1.2로 내리지역0.45보다 높게 나타났다. 광산 하류 수계 내 퇴적토의 Cd, Pb 및 Zn 함량은 우리나라 하천용지의 토양오염 우려기준(Cd 10, Pb 400, Zn 600 mg/kg)을 초과하였다. 또한 퇴적토의 중금속 오염지수(PI)는 상리지역 0.98~7.32, 내리지역 0.34~5.27로 지점별 편차가 컸으며, 하류 1km 지점 합류지점(SN-1, SN-2)까지 오염된 것으로 나타났다. 퇴적토의 부화계수(EFc) 평균치는 Cd>Pb>Zn>As>Cu>Cr>Ni 순으로 지점간의 편차가 큰 것으로 나타났다. 퇴적토의 중금속별 지화학적농축계수(Igeo)는 지점별로 약간의 차이는 있으나 Zn>Cd>Pb>Cu>As>Cr>Ni 순으로 높았으며, 특히 Zn의 경우 광산 침출수 영향을 받은 퇴적토에서 경보오염에서 위험오염(Igeo 3.1~6.2) 상태로 심하게 오염된 것으로 나타났다. 결과적으로 삼보광산 하류 하천수질 및 퇴적토의 오염도 평가를 종합해 볼 때 광산 침출수의 영향이 하류 수계 1 km 이상(SN-1, SN-2)까지 미치는 것을 확인할 수 있었다.

Keywords

References

  1. An, Y.J., Lee, W.M., Yoon, C.G., 2006. Evaluation of korean water quality standards and suggestion of additional water parameters, Korean J. Limnol. 39, 285-295.
  2. Bhattacharya, A., Routh, J., Jacks, G. Bhattacharya, P., Morth, M., 2006. Environmental assessment of abandoned mine tailings in Adak, Vasterbotten district (northern Sweden), Applied Geochemistry 21, 1760-1780. https://doi.org/10.1016/j.apgeochem.2006.06.011
  3. Cherry, D.S., Currie, R.J., Soucek, D.J., Latimer, H.A., Trent, G.C., 2001. An integrative assessment of a watershed impacted by abandoned mined land discharges, Environmental Pollution 111, 377-388. https://doi.org/10.1016/S0269-7491(00)00093-2
  4. Choi, S.G., Park, S.G, Lee, P.K., Kim, C.S., 2004. An overview of geoenvironmental implications of mineral deposits in Korea, Econ. Environ. Geol. 37:1-19.
  5. Dinelli, E., Lucchini, F., Fabbri, M., Cortecci, G., 2001. Metal distribution and environmental problems related to sulfide oxidation in the Libiola copper mine area (Ligurian Apennines, Italy), J. Geochem. Explor. 74, 141-152. https://doi.org/10.1016/S0375-6742(01)00180-7
  6. Duce, R.A., Hoffman, G.L., Zoller, W.H., 1975. Atmospheric trace metals at remote northern and southern hemisphere sites: pollution or natural?, Science 187, 339-342. https://doi.org/10.1126/science.187.4174.339
  7. Espinosa, E., Armienta, M.A., Cruz, O., Aguayo, A., Ceniceros, N., 2009. Geochemical distribution of arsenic, cadmium, lead and zinc in river sediments affected by tailings in Zimapan, a historical polymetalic mining zone of Mexico, Environ Geol. 58, 1467-1477. https://doi.org/10.1007/s00254-008-1649-6
  8. Jeon, S.R., Chung, J.I., Kim, D.H., 2001. Environmental effects from national waters contaminated with acid mine drainage in the abandoned Backen mine area, Econ. Environ. Geol. 35, 325-337.
  9. Jung, G.B., Kim, W.I., Lee, J.S., Lee, J.S., Park, C.W., Koh, M.H., 2005, Characteristics of heavy metal contamination in residual mine tailings near abandoned metalliferous mines in Korea, Kor. J. Environ. Agric . 24, 222-231. https://doi.org/10.5338/KJEA.2005.24.3.222
  10. Jung G.B., Lee J.S., Kim W.I., Ryu J.S., Yun S.G., 2008. Monitoring of Seasonal Water Quality Variations and Environmental Contamination in the Sambo Mine Creek, Korea, Kor. J. Environ. Agric . 27, 328-336. https://doi.org/10.5338/KJEA.2008.27.4.328
  11. Jung, M.C., Chon, H.T., 1998. Seasonal variation of heavy metal contents and environmental contamination in paddy fields aroud the Sambo Pb-Zn mine, Korea, The Kor. soc. for grosys. engineer. 35, 19-29.
  12. Jung, M.C., Jung, M.Y., Choi, Y.W., 2004. Environmental assessment of heavy metals around abandoned metalliferous mine in Korea, Econ. Environ. Geol . 37, 21-33.
  13. Kang, M.J., Lee, P.K., Youm, S.J., 2006. Characteristics of geochemical behaviors of trace metals in drainage from abandoned Sechang mine, Econ. Environ. Geol. 37, 213-227.
  14. Kim, H.J., Park, B.K., Kong, S.H., Lee, J.Y., Ok, Y.S., Jun, S.H., 2005. Fraction and Geoaccumulation Assessment Index of Heavy Metals in Abandoned Mines wastes, Journal of KoSSGE 10, 75-80.
  15. Kloke, A., 1979. Content of arsenic, cadmium, chromium, fluorine, lead, mercury, and nickel in plants grown on contaminated soil, Paper presented at United Nations-ECE Symp.
  16. Lee, C.H., Lee, H.K., Lee, J.C., Jeon, S.R., 2001. Environmental geochemistry and contamination assessment of the Tohyun mine creek, Korea, Econ. Environ. Geol. 34, 471-483.
  17. Lee P.K., Jo H.Y., Youm S.J., 2004. Geochemical Approaches for Investigation and Assessment of Heavy Metal Contamination in Abandoned Mine Sites, Econ. Environ. Geol . 37, 35-48.
  18. Lin, C., Wu, Y., Lu, W., Chen, A., Liu., Y., 2007. Water chemistry and ecotoxicity of an acid mine drainage-affected stream in subtropical China during a major flood event, J. Hazard. Mater. 142, 199-207. https://doi.org/10.1016/j.jhazmat.2006.08.006
  19. Loska, K., Wiechua, D., Korus, I., 2004. Metal contamination of farming soils affected by industry, Environment International 30, 159-165. https://doi.org/10.1016/S0160-4120(03)00157-0
  20. Moncur, M.C., Ptacek, C.J., Blowes, D.W., Jambor, J.L., 2006. Spatial variations in water composition at a northern Canadian lake impacted by mine drainage, Applied Geochemistry 21, 1799-1817. https://doi.org/10.1016/j.apgeochem.2006.06.016
  21. Muller, G., 1979. Index of geoaccumulation in sediments of the Rhine river, Geojournal 2, 108-118.
  22. Olias, M., Nieto, J.M., Sarmiento, A.M., Ceron, J.C., Canovas, C.R., 2004. Seasonal water quality variations in a river affected by acid mine drainage: the Odiel River(south west Spain), Sci. Total Environ. 333, 267-281. https://doi.org/10.1016/j.scitotenv.2004.05.012
  23. Varol, M., 2011. Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques, J. Hazard. Mater. 195, 355-364. https://doi.org/10.1016/j.jhazmat.2011.08.051

Cited by

  1. Competitive Adsorption Characteristics of Cupper and Cadmium Using Biochar Derived from Phragmites communis vol.34, pp.1, 2015, https://doi.org/10.5338/KJEA.2015.34.1.10
  2. Applicability Assessment of Steel Slag as Reactive Capping Material for Blocking Phosphorus Release from Marine Sediment vol.56, pp.3, 2014, https://doi.org/10.5389/KSAE.2014.56.3.011
  3. Assessment of Human Bioavailability Quotient for the Heavy Metal in Paddy Soils Below Part of the Closed Metalliferous Mine vol.34, pp.3, 2015, https://doi.org/10.5338/KJEA.2015.34.3.30
  4. Hydrochemical assessment of environmental status of surface and ground water in mine areas in South Korea: Emphasis on geochemical behaviors of metals and sulfate in ground water 2017, https://doi.org/10.1016/j.gexplo.2017.09.014
  5. Applicability Assessment of Acid Treated Red Mud as Adsorbent Material for Removal of Six-valent Chromium from Seawater vol.55, pp.5, 2013, https://doi.org/10.5389/KSAE.2013.55.5.017
  6. Assessment of the Heavy Metal Contamination in Paddy Soils Below Part of the Closed Metalliferous Mine vol.34, pp.1, 2015, https://doi.org/10.5338/KJEA.2015.34.1.08