DOI QR코드

DOI QR Code

Exponentially Fitted Error Correction Methods for Solving Initial Value Problems

  • Kim, Sang-Dong (Department of Mathematics, Kyungpook National University) ;
  • Kim, Phil-Su (Department of Mathematics, Kyungpook National University)
  • Received : 2012.03.05
  • Accepted : 2012.06.22
  • Published : 2012.06.23

Abstract

In this article, we propose exponentially fitted error correction methods(EECM) which originate from the error correction methods recently developed by the authors (see [10, 11] for examples) for solving nonlinear stiff initial value problems. We reduce the computational cost of the error correction method by making a local approximation of exponential type. This exponential local approximation yields an EECM that is exponentially fitted, A-stable and L-stable, independent of the approximation scheme for the error correction. In particular, the classical explicit Runge-Kutta method for the error correction not only saves the computational cost that the error correction method requires but also gives the same convergence order as the error correction method does. Numerical evidence is provided to support the theoretical results.

Keywords

References

  1. C. E. Abhulimen, G. E. Omeike, A sixth-order exponentially fitted shceme for the numerical solution of systems of ordinary differential equations, J. Appl. Math. & Bioinf., 1(2011), 175-186.
  2. R. R. Ahmad, N. Yaacob, A. H. Mohd Murid, Explicit methods in solving stiff ordinary differential equations, Int. J. Comput. Maht., 81(2004), 1407-1415. https://doi.org/10.1080/00207160410001661744
  3. J. Alverez, J. Rojo, An improved class of generalized Runge-Kutta methods for stiff problems. Part I: The scalar case, Appl. Math. Comput., 130(2002), 537-560. https://doi.org/10.1016/S0096-3003(01)00115-1
  4. L. Brugnano and C. Magherini, Blended implementation of block implicit methods for ODEs, Appl. Numer. Math., 42(2002), 29-45. https://doi.org/10.1016/S0168-9274(01)00140-4
  5. J. R. Cash, On the exponential fitting of composite, multiderivative linear multistep methods, SIAM J. Numer. Anal., 18(1981), 808-821. https://doi.org/10.1137/0718055
  6. M. V. Daele and G. V. Berghe, Extended one-step methods: an exponential fitting approach, Appl. Num. Anal. Comp. Math., 1(2004), 353-362. https://doi.org/10.1002/anac.200410003
  7. G. Dahlquist, A special stability problem for linear multistep methods, BIT, 3(1963), 27-43. https://doi.org/10.1007/BF01963532
  8. L. W. Jackson and S. K. Kenue, A fourth order exponetially fitted method, SIAM J. Numer. Anal., 11(1974), 965-978. https://doi.org/10.1137/0711075
  9. W. Liniger and R. A. Willoughby, Efficient integration methods for stiff systems of ordinary differential equations, SIAM J. Numer. Anal., 7(1970), 47-65. https://doi.org/10.1137/0707002
  10. P. Kim, X. Piao and S. D. Kim, An error corrected Euler method for solving stiff problems based on Chebyshev collocation, SIAM J. Numer. Anal., 49(2011), 2211-2230. https://doi.org/10.1137/100808691
  11. S. D. Kim, X. Piao and P. Kim, Convergence on Error correction methods for initial value problems, J. Comp. Appl. Math., to appear.
  12. H. Ramos, A non-standard explicit integration scheme for initial-value problems, Appl. Math. Comp., 189(1)(2007), 710-718. https://doi.org/10.1016/j.amc.2006.11.134
  13. D. Voss, A fifth-order exponentially fitted formula, SIAM J. Numer. Anal., 25(1988), 670-678. https://doi.org/10.1137/0725040
  14. X. Y. Wu, A sixth-order A-stable explicit one-step method for stiff systems, Comput. Math. Appl., 35(1998), 59-64.

Cited by

  1. A new approach to estimating a numerical solution in the error embedded correction framework vol.2018, pp.1, 2018, https://doi.org/10.1186/s13662-018-1619-6