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Abstract. In this article, we propose exponentially fitted error correction meth-

ods(EECM) which originate from the error correction methods recently developed by the

authors (see [10, 11] for examples) for solving nonlinear stiff initial value problems. We

reduce the computational cost of the error correction method by making a local approxi-

mation of exponential type. This exponential local approximation yields an EECM that

is exponentially fitted, A-stable and L-stable, independent of the approximation scheme

for the error correction. In particular, the classical explicit Runge-Kutta method for the

error correction not only saves the computational cost that the error correction method

requires but also gives the same convergence order as the error correction method does.

Numerical evidence is provided to support the theoretical results.

1. Introduction

In this paper we are concerned with numerical methods for solving stiff initial
value problems (IVPs)

(1.1)
dϕ

dt
= f(t, ϕ(t)), t ∈ (t0, T ]; ϕ(t0) = ϕ0.

The main objectives of the numerical methods are not only to reduce the computa-
tional cost but also to enhance accuracy and stability. These objectives are related
to the representative aspects of IVPs such as stiffness, nonlinearity and their corre-
lation.

It is well known that the A-stability of numerical methods is a key issue for
stiff systems because one can choose the step size based only on accuracy without
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worrying about its stability constraint. Using higher-order derivatives, the idea of
exponentially fitted methods (EFM), which was originally proposed by Liniger and
Willoughby [9], has received considerable attention [1, 5, 6, 8, 13]. The basic idea
of exponential fitting is to derive integration formulae containing free parameters
and then to choose these parameters so that the given exponential function satisfies
the integration formula exactly. Explicit numerical methods are better for over-
coming nonlinearity and simple to implement but poor for stability (see [4, 7] for
example). There are only a few explicit numerical methods having a good stability.
For example, Wu [14] developed a sixth-order A-stable explicit one-step method
based on a Taylor’s series method, which was proved to be an exponentially fitted
L-stable method but requires higher-order derivatives for the function f . Recently,
Ramos [12] suggested a non-standard explicit numerical integration method which
is A-stable with second-order accuracy for solving stiff IVPs.

This article constructs a new type of EFM which only require just the first
derivatives of f , and do not require such iteration steps for nonlinear discrete sys-
tems as most implicit methods do. The scheme we develop is based on the same
procedures of the error correction methods (ECM) recently developed by the au-
thors (see [10, 11] for examples) except for choosing the local approximation and
solving the asymptotic equation for the difference between the true solution and the
local approximation. We use a local approximation of the form

x(t) = a exp(b(t− tm)), t ∈ [tm, tm+1].

This exponential local approximation yields an exponentially fitted error correction
method (EECM) that is exponentially fitted A-stable and L-stable. That is, the
proposed EECM has the exact solution for the Dahlquist’s problem. In particu-
lar, we find that the error correction is identically zero for the Dahlquist’s problem
and hence the stability of the EECM doesn’t depend on an approximation scheme
for the error correction. The classical explicit Runge-Kutta (RK) method for ap-
proximating the error correction not only saves the computational cost that ECM
requires but also has the same order of convergence as the ECM.

This paper is organized as follows. Section 2 derives an accurate L-stable EFM
with the convergence order 4. In Section 3, we simulate several test problems to
provide numerical evidences. Finally, we provide some comments and conclusions
in Section 4.

2. Derivation of an approximation method

The goal of this section is to derive a novel algorithm to get next approximation
ym+1 at time tm+1 = tm + h for a given approximation ym at time tm to the exact
solution ϕ(t) for (1.1). The uniform time step size h := tm+1−tm, m = 0, 1, · · · , will
be used from now on. To the aim, we consider a local approximation x(t) defined
by

(2.1) x(t) := ym exp
(fm
ym

(t− tm)
)
, t ∈ [tm, tm+1],
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where we assume that ym ̸= 0. Then, it can be shown that

(2.2) G(t) := f(t, x(t))− x′(t) = O(h), t ∈ [tm, tm+1].

Using the local approximation x(t) defined by (2.1), we consider a perturbation ψ(t)
of the solution ϕ(t) on each time step [tm, tm+1] defined by

(2.3) ψ(t) := ϕ(t)− x(t), t ∈ [tm, tm+1],

which satisfies the asymptotic linear ODE (see [10] for example)

(2.4) ψ′(t) = φ(t)ψ(t) +G(t) +O
(
ψ(t)2

)
, φ(t) = fϕ(t, x(t)), t ∈ (tm, tm+1),

where the generic constant in O(·) depends on the bounds of the second order
derivatives of f . By some manipulations with the integrating factor method for the
equation (2.4), one may show that the solution ϕ(tm+1) can be expressed by

(2.5) ϕ(tm+1) = x(tm+1) + Cm + ρ,

where
(2.6)

Cm =
h

2

∫ 1

−1

E(s)G(t(s))ds, E(s) = exp
(h
2

∫ 1

s

φ(t(ξ))dξ
)
, t(s) := tm+

h

2
(1+s),

and

(2.7) |ρ| ≤ (1 + C1h)|Em|+ C2h
5, Em := ϕ(tm)− ym

for some constants Ci independent of h and m. For the detailed proof, one refer to
see the references [10, 11].

Theorem 2.1. Let Am be an arbitrary approximation for the correction term Cm

with the error bound

(2.8) |Cm −Am| ≤ Chq, m ≥ 1

for some constant C independent of h and m, where q is a positive number. Now,
if one design an approximation scheme defined by

(2.9) ym+1 = x(tm+1) +Am, m ≥ 0; y0 = ϕ0,

then, the actual error Em := ϕ(tm)− ym has the convergence result

(2.10) |Em| ≤ D
(
exp(CT )− 1

)
hmin(4,q−1), m ≥ 0

for some constants C and D independent of h and m.
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Proof. From (2.7) and (2.8), subtracting (2.9) from (2.5) yields

(2.11) |Em+1| ≤ (1 + Ch)|Em|+Dhmin(2p+3,q), m ≥ 0; |E0| = 0

for some constants C and D independent of h and m. Thus, by induction, the
difference equation (2.11) can be solved and gives the desired inequality (2.10). 2

Now, for the approximation of the error correction term Cm defined by (2.6),
we observe the following lemma.

Theorem 2.2. Assume that ϑ(t) is the solution of the initial value problem

(2.12) ϑ′(t) = φ(t)ϑ(t) +G(t), t ∈ (tm, tm+1] ; ϑ(tm) = 0.

Then, one have
Cm = ϑ(tm+1).

Proof. Using the change of variables t = t(s) defined by (2.6), for the solution ϑ(t)
of IPV (2.12) we define

ϑ̄(s) = ϑ(t(s)), s ∈ [−1, 1].

Then, one may check that ϑ̄(s) is the solution of IVP

(2.13) ϑ̄′(s) =
h

2
φ(t(s))ϑ̄(s) +

h

2
G(t(s)), t ∈ (−1, 1] ; ϑ̄(−1) = 0.

Multiplying an integrating factor exp
(
−h
2

∫ s

−1

φ(t(ξ))dξ
)

to both sides of (2.13)

leads to

d

ds

(
exp

(
−h
2

∫ s

−1

φ(t(ξ))dξ
)
ϑ̄(s)

)
=
h

2
exp

(
−h
2

∫ s

−1

φ(t(ξ))dξ
)
G(t(s).

Now, integrating it from −1 to 1 and using the initial condition of (2.13) yield

exp
(
−h
2

∫ 1

−1

φ(t(ξ))dξ
)
ϑ̄(1) =

h

2

∫ 1

−1

exp
(
−h
2

∫ s

−1

φ(t(ξ))dξ
)
G(t(s))ds

or equivalently

ϑ̄(1) =
h

2

∫ 1

−1

exp
(h
2

∫ 1

s

φ(t(ξ))dξ
)
G(t(s))ds,

which is exactly same with the error correction Cm defined by (2.12). 2

In the following Theorem 2.3, we will show that the stability constraint of
the numerical method we want to develop depends only on the exponential local
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approximation x(t) defined by (2.1). That is, the stability is independent of the
approximation scheme of the error correction Cm defined by (2.6). Notice that the
error correction Cm defined by (2.6) contains two integrals which may require to
evaluate an expensive exponential function for a matrix for the case of the system
of ODE. Thus, instead of a direct use of the formula (2.6), we are going to use the
solution of IVP (2.12) to optimize the computational cost for the calculation of Cm.
Based on Theorem 2.2, we will take the fourth-order explicit RK method, which has
a fifth-order local truncation error, for solving IVP (2.12). By the facts ϑ(tm) = 0
and G(tm) = 0, applying RK method to (2.12) yields

(2.14) Cm =
h

6

[
2V1 + 2V2 + V3

]
+O(h5),

where

(2.15)

V1 = G(tm+ 1
2
),

V2 =
h

2
φ(tm+h

2
)V1 +G(tm+ 1

2
),

V3 = hφ(tm+1)V2 +G(tm+1),

where tm+α = tm + αh. Substituting (2.14) into (2.15) leads to

(2.16) ϕ(tm+1) = x(tm+1) +
h

6

[
2V1 + 2V2 + V3

]
+ ρ+O(h5).

From the representation (2.16), one may define an explicit one step method as
follows.

(2.17)
ym+1 = x(tm+1) +

h

6

[
2V1 + 2V2 + V3

]
, m ≥ 0,

y0 = ϕ0.

From Theorem 2.1, one may easily see that the algorithm (2.17) has the convergence
order 4.

Now we close the section by analyzing the stability of the algorithm (2.17). To
the aim, we apply the algorithm (2.17) with Dahlquist’s probelm

(2.18) ϕ′(t) = λϕ(t), t > 0; ϕ(0) = ϕ0,

where λ is a complex number such that Re(λ) < 0. For the problem (2.18), the
local approximation platform x(t) defined in (2.1) becomes

(2.19) x(t) = ym exp(λ(t− tm)), t ∈ [tm, tm+1]

and its residual error G(t) defined in (2.2) becomes

(2.20) G(t) = 0, t ∈ [tm, tm+1].
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The identity (2.20) shows that the IVP (2.12) has a trivial solution. Hence, from
the formula (2.19), the algorithm (2.17) can be simplified by

(2.21) ym+1 = ym exp(λh), m ≥ 0; y0 = ϕ0.

Hence, we have the following theorem.

Theorem 2.3. The algorithm (2.17) gives an exact solution to the Dahlquist’s
problem (2.18) and is A-stable and L-stable.

Proof. By induction, the difference relation (2.21) can be solved by

(2.22) ym = y0 exp(λmh) = y0 exp(λtm), tm = mh ∈ [0, T ].

Thus, for any t = tm ∈ [0, T ], we have

ym = ϕ(t).

This means that the algorithm (2.17) gives an exact solution to the Dahlquist’s
problem (2.18).

For the proof of the stability, we let λ = x + iy with x < 0. Then, the first
equation of (2.22) shows

(2.23) ym = y0 exp(mhx) exp(imhy), m ≥ 0.

Since x < 0, the equation (2.23) shows that the sequence {ym} converges to 0
whenever m → ∞. Consequently, the algorithm (2.17) is A-stable. It is easy
to see from (2.21) that the algorithm (2.17) is also L-stable. In fact, we have
Q(hλ) = exp(hλ) and |Q(hλ)| → 0 as Re(hλ) → −∞. 2

Remark 2.4. Some comparisons between the algorithm (2.17) and the ECM in
[10] can be summarized as follows.

(a) Theorem 2.2 says that the algorithm (2.17) is an explicit one-step method
and exponentially fitted L-stable with the convergence of accuracy 4, which
is a considerable improvement compared with the ECM (see [10] for example)
in the sense of the stability.

(b) From the fact (2.20), the correction term Cm for the Dahlquist’s problem is
identically zero. It means that the stability of the algorithm (2.17) depends
only on the exponential local approximation x(t) defined by (2.1). Hence,
one can choose an approximation scheme for the error correction term based
only on the accuracy without worrying about its stability constraint, but that
of the algorithm ECM depends on the approximation scheme for the correc-
tion term. Thus the classical RK method for the correction term completely
reduces the computational cost that the ECM requires.
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3. Numerical experiments

In this section, three test problems are taken to give numerical evidences of the
theoretical results for the proposed methods. For the comparison of the numerical
results, the maximum error Err(h) and convergence rates are employed, which are
defined by

(3.1) Err(h) = max
1≤j≤n

∥ϕ(tj)− yj∥∞, rate =
log(Err(h1)/Err(h2))

log(h1/h2)
,

respectively, where ∥ · ∥∞ denotes the maximum norm and hj , j = 1, 2 are given
two time step sizes. All numerical computations in the following are performed
with Matlab R2007a(32bit) in the personal computer having the processor Intel(R)
Core2Quad(TM) Q8200 2.33GHz. All existing methods we take for the numerical
comparison use a time step control process to optimize the computational cost.
Also, the order of convergence for the existing methods are different from each
other. Thus, a direct comparison between the present algorithm EECM and the
existing methods seems to be unfair and so we will compare the numerical results
of the existing methods and EECM just in the sense of the computation time cost
“cpu” and the maximum error.

Example 3.1. Consider the following nonlinear problem (see [3])

(3.2)
dϕ

dt
=
λϕ(t)(1− ϕ(t))

2ϕ(t)− 1
, t > 0; ϕ(0) =

5

6
,

whose solution is ϕ(t) = 1
2 +

√
1
4 − 5

36e
−λt. To investigate the stiffness, the

problem (3.2) is solved on the interval [0, 2] with the parameter λ = 30 which gives
a mild stiffness around initial time. For the numerical convergence, we solve the
problem with different step sizes h = 2−n, n = 4, · · · , 10. One can see that from the
numerical results reported in Table 1, the numerical convergence order converges to
4 as the step size is decreasing. To compare a numerical efficiency, the problem (3.2)
is solved by the EECM and two matlab built-in functions ODE15s and ODE23s on
the interval [0, 0.4] containing the stiff region. The uniform step size h = 2−10 is
chosen for the algorithm EECM. Also, the error tolerances RelTol = 10−9 = AbsTol
are taken for the matlab built-in functions ODE15s and ODE23s, which are known
as solvers for stiff problems. The numerical results of the maximum error and
the CPU time for each method are reported in Table 2 and one can see that the
algorithm EECM is superior to two existing methods in the sense of the maximum
error and CPU time.

Example 3.2. Consider the following linear stiff problem taken from [2]

(3.3)
dϕ

dt
= −100ϕ(t) + 99 exp(2t) + 100, t > 0; ϕ(0) = 1,
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Table 1. Results for Example 3.1 on [0, 2] with step size h = 2−n,
n = 4, · · · , 10

n Err(h) rate

4 4.05× 10−2 −−
5 3.73× 10−3 3.44
6 2.57× 10−4 3.86
7 1.45× 10−5 4.15
8 8.34× 10−7 4.12
9 4.99× 10−8 4.06
10 3.03× 10−9 4.04

Table 2. Numerical comparison for Example 3.1, using EECM, ODE15s
and ODE23s

EECM ODE15s ODE23s

Err(h) CPU Err(h) CPU Err(h) CPU

3.03× 10−9 0.02 3.80× 10−9 0.05 6.57× 10−8 0.22

whose solution is ϕ(t) = 33
34 (exp(2t)− exp(−100t)) + 1.

Note that the stiffness of the solution occurs around the zero and the solution
is dominated by 33

34 exp(2t) far away from zero. For the numerical convergence test,
the problem (3.3) is solved on the interval [0, 5] with different step sizes h = 2−n,
n = 6, · · · , 11. One can see that from the numerical results reported in Table 3, the
numerical convergence order approaches to 4 as the step size is decreasing. For a
comparison of numerical efficiency, the uniform step size h = 2−11 for the EECM
and the error tolerances RelTol = 10−12, AbsTol = 10−14 are used for the matlab
built-in functions ODE15s and ODE23s. The numerical results of the maximum
error and the CPU time for each method are reported in Table 4 and one can see
that the EECM is superior to two existing methods in the sense of cpu time.

Also, from the figure for the absolute error given in Fig. 1, one can see that the
EECM has the maximum error around the stiff region, but two existing methods
ode15s and ode23s have their maximum errors at the end of the time. That is, one
may assert that the algorithm EECM works well to a solution with the exponential
growth.
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Fig. 1. Numerical results obtained by EECM, ODE15s and ODE23s for
the problem (3.3) on the time [0, 5]; h = 2−11 for EECM.

Example 3.3. As a system example, consider the following nonlinear problem

(3.4)
dΦ

dt
= F(Φ), t > 0; Φ(0) = Φ0,

where Φ = [ϕ1, ϕ2]
T ∈ Φ ∈ R2, Φ0 and F is defined by

Φ0 = [1, 1]T , F(Φ) =

[
−(λ+ 2)ϕ1(t) + λϕ22(t)
ϕ1(t)− ϕ2(t)(1 + ϕ2(t))

]
,

whose solutions are given by

(3.5) ϕ1(t) = exp(−2t), ϕ2(t) = exp(−t), t > 0.

Note that the larger the parameter λ is, the stronger the stiffness becomes
around the initial time. In this numerical test, we take λ = 80 giving a mild
stiffness at the initial time. The problem (3.4) is solved on the time interval [0, 2] by
using three methods EECM, ode15s, and ode23s. We use the uniform time step size
h = 2−5 for the EECM and the error tolerances RelTol = 10−13 and AbsTol = 10−15

for the matlab built-in functions ODE15s and ODE23s. The numerical results of
the maximum error and the CPU time for each method are compared in Table 5.

The numerical results show that the algorithm EECM is superior to two exist-
ing methods in the sense of both maximum error and cpu time.
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Table 3. Results for Example 3.2 on [0, 5] with step size h = 2−n,
n = 6, · · · , 11

n Err(h) rate

6 2.68× 10−1 –
7 7.47× 10−3 5.16
8 2.39× 10−4 4.97
9 1.09× 10−5 4.46
10 5.84× 10−7 4.22
11 3.39× 10−8 4.11

Table 4. Numerical comparison for Example 3.2, using EECM, ODE15s
and ODE23s

EECM ODE15s ODE23s

Err(h) CPU Err(h) CPU Err(h) CPU

3.39× 10−8 0.05 2.38× 10−8 0.42 4.31× 10−6 65.07

Table 5. Results for Example 3.3, using EECM, ODE15s and ODE23s
EECM ODE15s ODE23s

Err(h) CPU Err(h) CPU Err(h) CPU

6.53× 10−14 0.001 2.16× 10−13 0.23 3.63× 10−11 51.43

4. Conclusion

Explicit one-step exponentially fitted error correction methods with convergence
order 4 for solving initial value problems are developed using an exponential local
approximation platform. The stability properties are analyzed and it is shown that
the proposed methods are L-stable. It is remarkable that the good stability and
fourth-order convergence are obtained even though the scheme is an one-step ex-
plicit type and do not any linear matrix solver.
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