DOI QR코드

DOI QR Code

An Adaptive Blind Equalizer Using Gaussian Two-Cluster Model

가우시안 2-군집 모델을 사용한 적응 블라인드 등화기

  • 오길남 (광주대학교 광통신공학과)
  • Received : 2012.02.08
  • Accepted : 2012.05.24
  • Published : 2012.06.30

Abstract

In this paper, blind equalization technique using Gaussian two-cluster model is proposed. The proposed approach, by modeling the received M-QAM signals as Gaussian distributed two-cluster, minimizes the computational complexity and enhances the reliability of the signal estimates. In addition, by using a nonlinear estimator with variable parameters to estimate the transmitted signal, and by selectively applying the reduced constellation and the original constellation when estimating the signals, the reliability of the signal estimation was further improved. As a result, the proposed approach has improved the performance while reducing the complexity of the equalizer. Through computer simulations for blind equalization of higher-order signals of 64-QAM, it was confirmed that the proposed method showed better performance than traditional approaches.

본 논문에서는 가우시안 2-군집 모델을 사용한 블라인드 등화 방법을 제안한다. 제안 방식에서는 M-QAM 수신 신호를 가우시안 분포하는 2-군집으로 모델링하여 계산 복잡성을 최소화하고 신호 추정의 신뢰도를 높였다. 여기에 가변 파라미터 비선형 추정기를 사용하여 송신 신호를 추정하고, 신호 추정 시 군집의 분산에 따라 축소신호점과 원신호점을 선택적으로 적용하여 신호 추정의 신뢰도를 더욱 개선하였다. 결과적으로 제안 방식은 등화기의 계산 복잡성을 단순화하면서 성능을 개선하였다. 모의실험을 통해 64-QAM의 고차 신호에 대한 블라인드 등화에서 제안 방식이 기존 방식에 비해 우수한 성능을 보임을 확인하였다.

Keywords

References

  1. R. Lopez-Valcarce and F. Perez-Gonzalez, "Efficient reinitialization of the prewhitened constant modulus algorithm," IEEE Commun., Letters, vol. 5, no. 12, pp. 488-490, Dec. 2001. https://doi.org/10.1109/4234.974495
  2. S. Haykin, Adaptive filter theory, 4th Ed., Prentice Hall, New Jersey, 2002.
  3. Y.-H. Kim and S. Shamsunder, "Adaptive algorithms for channel equalization with soft decision feedback," IEEE J. Select. Areas Commun., vol. 16, no. 9, pp. 1660-1669, Dec. 1998. https://doi.org/10.1109/49.737635
  4. O. Macchi and E. Eweda, "Convergence analysis of self-adaptive equalizers," IEEE Trans. Inform. Theory, vol. 30, pp. 161-176, Mar. 1984. https://doi.org/10.1109/TIT.1984.1056896
  5. J. Karaoguz, "A generalized decision-directed blind equalization algorithm applied to equalization of multipath Rayleigh fading mobile communication channels," Ph.D. Dissertation, North Carolina State Univ., 1992.
  6. S. Chen, S. McLaughlin, P.M. Grant, and B. Mulgrew, "Multi-stage blind clustering equaliser," IEEE Trans. Commun., vol. 43, no. 2/3/4, pp. 701-705, Feb./Mar./Apr. 1995. https://doi.org/10.1109/26.380093
  7. S. Fiori, "Analysis of modified "Bussgang" algorithms (MBAs) for channel equalization," IEEE Trans. Circuits and Systems I, vol. 51 no. 8, pp. 1552-1560, Aug. 2004.
  8. C.A.R. Fernandes, G. Favier, and J.C.M. Mota, "Decision directed adaptive blind equalization based on the constant modulus algorithm," Signal, Image and Video Processing, vol. 1, no. 4, pp. 333-346, 2007. https://doi.org/10.1007/s11760-007-0027-2
  9. D. Hatzinakos and C.L. Nikias, "Estimation of multipath channel response in frequency selective channels," IEEE J. Select. Areas Commun., vol. 7, pp. 12-19, Jan. 1989. https://doi.org/10.1109/49.16839
  10. O. Shalvi and E. Weinstein, "New criteria for blind deconvolution of nonminimum phase systems (channels)," IEEE Trans. Inform. Theory, vol. 36, no. 2, pp. 312-321, Mar. 1990. https://doi.org/10.1109/18.52478