DOI QR코드

DOI QR Code

Estimation of Stocking Density using Habitat Suitability Index and Ecological Indicator for Oyster Farms in Geoje-Hansan Bay

서식적합도와 생태지표를 이용한 거제한산만 굴양식장의 입식밀도 산정

  • Cho, Yoon-Sik (Marine Environment Research Division, National Fisheries Research & Development Institute) ;
  • Lee, Won-Chan (Marine Environment Research Division, National Fisheries Research & Development Institute) ;
  • Hong, Sok-Jin (Marine Environment Research Division, National Fisheries Research & Development Institute) ;
  • Kim, Hyung-Chul (Marine Environment Research Division, National Fisheries Research & Development Institute) ;
  • Kim, Jeong-Bae (Marine Environment Research Division, National Fisheries Research & Development Institute) ;
  • Park, Jung-Hyun (Marine Environment Research Division, National Fisheries Research & Development Institute)
  • 조윤식 (국립수산과학원 어장환경과) ;
  • 이원찬 (국립수산과학원 어장환경과) ;
  • 홍석진 (국립수산과학원 어장환경과) ;
  • 김형철 (국립수산과학원 어장환경과) ;
  • 김정배 (국립수산과학원 어장환경과) ;
  • 박정현 (국립수산과학원 어장환경과)
  • Received : 2012.05.16
  • Accepted : 2012.06.25
  • Published : 2012.06.30

Abstract

Most of Korean farms have been developed in the semi-closed bay, and its position is very vulnerable to the coastal contamination due to the long term and the high density. So, mariculture management is very essential for the sustainable aquaculture. Some of the specific ways would be the assessment of the optimal stocking density for mariculture management zone and this has to consider both the suitable site selection and the assessment of ecological carrying capacity. Habitat suitability index(0.0 totally unsuitable habitat, 1.0 optimum habitat) and ecological indicator(Filtration pressure indicator) was used to assess the stocking density for oyster farms in Geoje-Hansan Bay. Geoje Bay showed the higher habitat suitability index value 0.75 than Hansan Bay 0.53, indicating that Geoje Bay is more suitable for oyster farming. Ecological indicator showed different stocking density according to the coastal characteristics in Geoje-Hansan Bay. Consequently, it is desirable that the stocking density in Geoje Bay should reduce average 40% and Hansan Bay, average 60% than present, in order to meet the ecological carrying capacity. The assessment of the stocking density could solve various problems such as the coastal contamination, environmental aggravation and the productivity decrease and this study could be a scientific basis to establish the policies for mariculture management.

대부분의 국내 어장들은 반폐쇄성 내만에 집중되어 있으며, 장기 양식과 높은 입식밀도에 의한 연안오염에 매우 취약한 위치를 점하고 있기 때문에, 지속적인 양식을 위하여 어장관리가 매우 중요한 실정이다. 이를 위한 방안으로 적지선정과 생태학적 환경수용력을 함께 고려한 최적 입식밀도 산정이 될 수 있다. 거제한산만 굴양식장의 입식밀도 산정을 위하여 0.0이 비적지, 1.0이 적지임을 나타내는 서식적합도(Habitat suitability index)와 생태지표인 여과압 지표(Filtration pressure indicator)가 이용되었다. 거제만의 서식적합도는 0.75로서 한산만 0.53보다 높았으며, 이는 거제만이 굴양식에 좀 더 적합함을 의미한다. 생태지표는 연안특성에 따라 다른 입식밀도를 나타내었으며, 결과적으로 거제만의 굴양식장에 대하여 현 입식밀도와 비교하여 평균 40%, 한산만은 평균 60% 저감 입식하여야 생태학적 환경수용력을 만족하는 것으로 나타났다. 입식밀도의 산정은 현재 국내 양식업이 직면한 연안오염, 환경악화, 생산성 감소에 대한 해결책을 제공할 수 있으며, 이 연구는 어장관리 정책 설립에 대한 과학적 근거로 활용될 수 있을 것이다.

Keywords

References

  1. Brown, J. R.(1986), The influence of environmental factors upon the growth and survival of the pacific oyster, Crassostrea gigas Thunberg, M. Sc. thesis, Simon Fraser University, Bernaby, B.C., p. 142.
  2. Cho, Y. S., S. J. Hong, S. E. Park, R. H. Jung, W. C. Lee and S. M. Lee(2010), Application of ecological indicator to sustainable use of oyster culture grounds in Geoje-Hansan Bay, Korea, Journal of the Korean society of marine environment & safety, Vol. 16, No. 1, pp. 21-29.
  3. Cho, Y. S., W. C. Lee, S. J. Hong, H. C. Kim and J. B. Kim(2012), GIS-based suitable site selection using habitat suitability index for oyster farms in Geoje-Hansan Bay, Korea, Ocean & Coastal Management, Vol. 56, pp. 10-16. https://doi.org/10.1016/j.ocecoaman.2011.10.009
  4. Gibbs, M. T.(2007), Sustainability performance indicators for suspended bivalve aquaculture activities, Ecological Indicators, Vol. 7, pp. 94-107. https://doi.org/10.1016/j.ecolind.2005.10.004
  5. Hanging Oyster Farming Cooperative(2008), personal communication, p. 23.
  6. Horiguchi, F., K. Nakata, P. Y. Lee, W. J. Choi, C. K. Kim and T. Terasawa(1998), Mathematical eco-hydrodynamical model application in Chinhae Bay, J. Adv. Mar. Sci. Tech. Soci., Vol. 4, No. 1, pp. 81-94.
  7. Jordan, T. E. and I. Valiela(1982), A nitrogen budget for the ribbed bivalve, Geukensia demissa, and its significance in nitrogen flow in a New England salt marsh, Limn. Oceanogr., Vol. 27, pp. 75-90. https://doi.org/10.4319/lo.1982.27.1.0075
  8. Kobayashi, M., E. E. Hofmann, E. N. Powell, J. M. Klink and K. Kusaka(1997), A population dynamics model for the Japanese oyster, Crassostrea gigas, Aquaculture, Vol. 149, pp. 285-321. https://doi.org/10.1016/S0044-8486(96)01456-1
  9. Lee, W. C., Y. S. Cho, S. J. Hong, H. C. Kim, J. B. Kim and S. M. Lee(2011), Estimation of ecological carrying capacity for oyster culture by ecological indicator in Geoje-Hansan Bay, Journal of the Korean society of marine environment & safety, Vol. 17, No. 4, pp. 315-322. https://doi.org/10.7837/kosomes.2011.17.4.315
  10. Longdill, P. C., T. R. Healy and K. P. Black(2008), An integrated GIS approach for sustainable aquaculture management area site selection, Ocean & Coastal Management, Vol. 51, pp. 612-624. https://doi.org/10.1016/j.ocecoaman.2008.06.010
  11. NFRDI(2008a), Environmental research of aquaculture farm in Korea, National Fisheries Research Development Institute, 1st(2008) Report, p. 243.
  12. NFRDI(2008b), Annual report of Korean marine environment monitoring, National Fisheries Research Development Institute, Vol. 13, p. 400.
  13. NFRDI(2009), Environmental research of aquaculture farm in Korea, National Fisheries Research Development Institute, 2nd(2009) Report, p. 443.
  14. Perez, O. M., T. C. Telfer and L. G. Ross(2005), Geographical information systems-based models for offshore floating marine fish cage aquaculture site selection in Tenerife, Canary Islands, Aquaculture Research, Vol. 36, pp. 946-961. https://doi.org/10.1111/j.1365-2109.2005.01282.x
  15. Radiarta, I. N., S. Saitoh and A. Miyazono(2008), GIS-based multi-criteria evaluation models for identifying suitable sites for Japanese scallop (Mizuhopecten yessoensis) aquaculture in Funka Bay, southwestern Hokkaido, Japan, Aquaculture, Vol. 284, pp. 127-135. https://doi.org/10.1016/j.aquaculture.2008.07.048
  16. Smaal, A. C. and T. C. Prins(1993), The uptake of organic matter and the release of inorganic nutrients by bivalve suspension feeder beds, In: Dame, R.F. (Ed.), Bivalve Filter Feeders in Estuarine and Coastal Ecosystem Processes, Springer Verlag Heidelberg, pp. 273-298.
  17. Statistics Korea(2010), Fishery production survey, Retrieved from http://fs.fips.go.kr/main.jsp (accessed 08. 20. 11.).
  18. U. S. Fish and Wildlife Service(1981), Standards for the development of Habitat Suitability Index models, Ecological Services Manual, Vol. 103. Division of Ecological Services, USFWS, U. S. Dept. Int., Washington, D. C., p. 171.
  19. Vincenzi, S., G. Caramori, R. Rossi and G. A. De Leo(2006), A GIS based Habitat Suitability model for commercial yield estimation of Tapes philippinarum in a Mediterranean coastal lagoon(Sacca diGoro, Italy), Ecological Modelling, Vol. 193, pp. 90-104. https://doi.org/10.1016/j.ecolmodel.2005.07.039

Cited by

  1. Monthly Variation of Phytoplankton Composition and Water quality in Cupped Oyster Crassostrea gigas Culture Area in Iwon, Korea vol.30, pp.3, 2014, https://doi.org/10.9710/kjm.2014.30.3.249
  2. 서식지 적합 지수를 이용한 멸종위기식물 단양쑥부쟁이와 층층둥굴레의 대체서식지 평가 vol.19, pp.4, 2017, https://doi.org/10.17663/jwr.2017.19.4.433
  3. Red Tide Events and Seasonal Variations in the Partial Pressure of CO2 and Related Parameters in Shellfish-Farming Bays, Southeastern Coast of Korea vol.8, pp.None, 2021, https://doi.org/10.3389/fmars.2021.738472
  4. 통영-거제해역 수하연 양식 참굴(Crassostrea gigas)의 비만도 장기변화와 영향 요인 고찰 vol.54, pp.4, 2012, https://doi.org/10.5657/kfas.2021.0434