DOI QR코드

DOI QR Code

InP/ZnSe/ZnS: A Novel Multishell System for InP Quantum Dots for Improved Luminescence Efficiency and Its application in a Light-Emitting Device

  • Ippen, Christian (Functional Materials and Devices, Fraunhofer Institute for Applied Polymer Research) ;
  • Greco, Tonino (Functional Materials and Devices, Fraunhofer Institute for Applied Polymer Research) ;
  • Wedel, Armin (Functional Materials and Devices, Fraunhofer Institute for Applied Polymer Research)
  • Received : 2011.12.30
  • Accepted : 2012.03.06
  • Published : 2012.06.30

Abstract

Indium phosphide (InP) quantum dots (QDs) are considered alternatives to Cd-containing QDs for application in light-emitting devices. The multishell coating with ZnSe/ZnS was shown to improve the photoluminescence quantum yield (QY) of InP QDs more strongly than the conventional ZnS shell coating. Structural proof for this system was provided by X-ray diffraction and transmission electron microscopy. QY values in the range of 50-70% along with peak widths of 45-50 nm can be routinely achieved, making the optical performance of InP/ZnSe/ZnS QDs comparable to that of Cd-based QDs. The fabrication of a working electroluminescent light-emitting device employing the reported material demonstrated the feasibility of the desired application.

Keywords

References

  1. D. Bera, L. Qian, T.-K. Tseng, and P.H. Holloway, Materials 3, 2260 (2010). https://doi.org/10.3390/ma3042260
  2. L. Kim, P.O. Anikeeva, S.A. Coe-Sullivan, J.S. Steckel, M.G. Bawendi, and V. Bulovicì, Nano Lett. 8, 4513 (2008). https://doi.org/10.1021/nl8025218
  3. D.V. Talapin, A.L. Rogach, A. Kornowski, M. Haase, and H. Weller, Nano Lett. 1, 207 (2001). https://doi.org/10.1021/nl0155126
  4. R. Xie, D. Battaglia, and X. Peng, J. Am. Chem. Soc. 129, 15432 (2007). https://doi.org/10.1021/ja076363h
  5. P. Mushonga, M. Onani, A.M. Madiehe, and M. Meyer, J. Nanomater. (2011). doi:10.1155/2012/869284
  6. B.O. Dabbousi, J. Rodriguez-Viejo, F.V. Mikulec, J.R. Heine, H. Mattoussi, R. Ober, K.F. Jensen, and M.G. Bawendi, J. Phys. Chem. B 101, 9463 (1997). https://doi.org/10.1021/jp971091y
  7. P. Reiss, M. Protiere, and L. Li, Small 5, 154 (2009). https://doi.org/10.1002/smll.200800841
  8. D.V. Talapin, I. Mekis, S. Gotzinger, A. Kornowski, O. Benson, and H.Weller, J. Phys. Chem. B 108, 18826 (2004). https://doi.org/10.1021/jp046481g
  9. R. Xie, U. Kolb, J. Li, T. Basche, and A. Mews, J. Am. Chem. Soc. 127, 7480 (2005). https://doi.org/10.1021/ja042939g
  10. L. Li and P. Reiss, J. Am. Chem. Soc. 130, 11588 (2008). https://doi.org/10.1021/ja803687e
  11. K. Huang, R. Demadrille, M.G. Silly, F. Sirotti, P. Reiss, and O. Renault, ACS Nano 4, 4799 (2010). https://doi.org/10.1021/nn100581t
  12. J. Ziegler, S. Xu, E. Kucur, F. Meister, M. Batentschuk, F. Gindele, and T. Nann, Adv. Mater. 20, 4068 (2008). https://doi.org/10.1002/adma.200800724
  13. J. Lim, W.K. Bae, D. Lee, M.K. Nam, J. Jung, C. Lee, K. Char, and S. Lee, Chem. Mater. 23, 4459 (2011). https://doi.org/10.1021/cm201550w

Cited by

  1. Large-scale synthesis of high quality InP quantum dots in a continuous flow-reactor under supercritical conditions vol.26, pp.8, 2012, https://doi.org/10.1088/0957-4484/26/8/085604