DOI QR코드

DOI QR Code

Rapid Detection of Cadmium-Resistant Plant Growth Promotory Rhizobacteria: A Perspective of ELISA and QCM-Based Immunosensor

  • Agrawal, Ruchi (Department of Biochemistry, CBSH, GB Pant University of Agriculture and Technology) ;
  • Satlewal, Alok (Department of Microbiology, CBSH, GB Pant University of Agriculture and Technology) ;
  • Chaudhary, Manav (Department of Biophysics, CBSH, GB Pant University of Agriculture and Technology) ;
  • Verma, Amit (Department of Biochemistry, CBSH, GB Pant University of Agriculture and Technology) ;
  • Singh, Rachna (Department of Biochemistry, CBSH, GB Pant University of Agriculture and Technology) ;
  • Verma, A.K. (Department of Biochemistry, CBSH, GB Pant University of Agriculture and Technology) ;
  • Kumar, Rajesh (Department of Microbiology, CBSH, GB Pant University of Agriculture and Technology) ;
  • Singh, K.P. (Department of Biophysics, CBSH, GB Pant University of Agriculture and Technology)
  • Received : 2011.08.23
  • Accepted : 2012.02.11
  • Published : 2012.06.28

Abstract

Plant growth-promoting rhizobacteria (PGPR) pseudomonads have a large number of lipopolysaccharides on the cell surface, which induces immune responses. Cd-resistant PGPR prevalent at the Cd-affected sites under biophytostabilization was monitored. Transmissiom electron microscopy was used to the study the behavior of tolerance of PGPR to cadmium level and its effect on pseudomonad strains (Z9, S2, KNP2, CRPF, and NBRI). An immunosensor was developed by immobilizing antibody (anti-Z9 or anti-S2) against selected PGPR on a piezoelectric quartz crystal microbalance (QCM). Immunosensors were found to supplement the inherent specificity of antigen-antibody reactions with the high sensitivity of a physical transducer. On comparison of the efficiency of detection with ELISA, the spectrophotometric technique, the developed immunosensor was found to be more sensitive, fast, and reliable even after regeneration for several times. Thus, the immunosensor may be used for future detection of PGPR strains after automation of the screening process.

Keywords

References

  1. Arce, L., M. Zougagh, C. Arce, A. Moreno, A. Ríos, and M. Valcarcel. 2007. Self assembled monolayer-based piezoelectric flow immunosensor for the determination of canine immunoglobulin. Biosens. Bioelectron. 22: 3217-3223. https://doi.org/10.1016/j.bios.2007.02.014
  2. Carter, R. M., J. J. Mekalanos, M. B. Jacobs, G. J. Lubrano, and G. G. Guilbault. 1995. Quartz crystal microbalance detection of Vibrio cholerae O139 serotype. J. Immunol. Methods 187: 121-125. https://doi.org/10.1016/0022-1759(95)00176-B
  3. Chou, S. F., W. L. Hsu, J. M. Hwang, and C. Y. Chen. 2002. Determination of ${\alpha}$-fetoprotein in human serum by a quartz crystal microbalance-based immunosensor. Clin. Chem. 48: 913-918.
  4. Choudhary, M. K., R. Agrawal, R. Kumar, P. Singh, B. R. K. Gupta, and K. P. Singh. 2010. Detection of cadmium-resistant rhizobacteria using piezoelectric nanobiosensor. Int. J. Nanosci. 9: 461-469. https://doi.org/10.1142/S0219581X10007034
  5. Eva, B. L., C. Olivier, J. Fco, and M. F. Xavier. 2008 Gold immuno-functionalisation via self-assembled monolayers: Study of critical parameters and comparative performance for protein and bacteria detection. J. Immunol. Methods 336: 203-212. https://doi.org/10.1016/j.jim.2008.04.017
  6. Garcia, M. N. V. and M. Toby 2003. Biosensor technology addressing agricultural problems. Biosyst. Eng. 84: 1-12. https://doi.org/10.1016/S1537-5110(02)00236-2
  7. Gaur, Y. D. 2000. Enzyme linked immuno assay, pp. 135-136. In: Immunological and Molecular Marker Techniques for Ecological Studies of Soil Microorganisms: A Manual Theory and Practice. Winter School (20 Dec. 1999-9 Jan. 2000). I.A.R.I.
  8. Guo, H. S., L. Luo, X. Chen, Q. Xiao, W. Xi, G. Wei, et al. 2010. Bioremediation of heavy metals by growing hyperaccumulaor endophytic bacterium Bacillus sp. L14. Bioresour. Technol. 101: 8599-8605. https://doi.org/10.1016/j.biortech.2010.06.085
  9. Hong, S. R. S., J. Choi, H. D. Jeong, and S. Hong. 2009. Development of QCM biosensor to detect a marine derived pathogenic bacteria Edwardsiella tarda using a novel immobilisation method. Biosens. Bioelectron. 24: 1635-1640. https://doi.org/10.1016/j.bios.2008.08.027
  10. Irem, K. O., H. Avn, and M. Mehmet, 2009. QCM-based DNA biosensor for detection of genetically modified organisms (GMOs). Biochem. Eng. J. 44: 142-150. https://doi.org/10.1016/j.bej.2008.11.011
  11. Ivnitski, D., I. Abdel-Hamid, P. Atanasov, and E. Wilkins. 1999. Biosensors for detection of pathogenic bacteria. Biosens. Bioelectron. 14: 599-624. https://doi.org/10.1016/S0956-5663(99)00039-1
  12. Jacobs, M. B. R., M. Cater, G. J. Lubrano, and G. G. Guilbault. 1995. A piezoelectric biosensor for Listeria monocytogenes. Am. Lab. 27: 26-28.
  13. Kumar, A. 2000. http://www.tms.org/pubs/journals/JOM/0010/Kumar/Kumar-0010.htmc.
  14. Liu, Y. C. C., M. Wang, and K. P. Hsiung. 2001. Comparison of different protein immobilization methods on quartz crystal microbalance surface in flow injection immunoassay. Anal. Biochem. 299: 130-135. https://doi.org/10.1006/abio.2001.5409
  15. Lopareva, P. A., B. Pourrut, C. Waterlot, G. Garcon, G. Bidar, C. Pruvot, et al. 2011. Assessment of fly ash-aided phytostabilisation of highly contaminated soils after an 8-year field trial: Part 1. Influence on soil parameters and metal extractability. Sci. Total Environ. 409: 647-654. https://doi.org/10.1016/j.scitotenv.2010.10.040
  16. Marco, M. P. and D. Barcelo. 1996. Environmental applications of analytical biosensors. Meas. Sci. Technol. 7: 1547-1562. https://doi.org/10.1088/0957-0233/7/11/002
  17. Muramatsu, H., K. Kajiwara, E. Tamiya, and I. Karube. 1986. Piezoelectric immunosensor for the detection of Candida albicans microbes. Anal. Chem. Acta 188: 257-261.
  18. Olivier, L., C. F. J. Del, and M. F. Xavier. 2007. Pathogen detection: A perspective of traditional methods and biosensors. Biosens. Bioelectron. 22: 1205-1217. https://doi.org/10.1016/j.bios.2006.06.036
  19. Ozturk, S., B. Aslim, and Z. Suludere. 2010. Cadmium (II) sequestration characteristics by two isolates of Synechocystis sp. in terms of exopolysaccharide (EPS) production and monomer composition. Bioresour Technol. 101: 9742-9748. https://doi.org/10.1016/j.biortech.2010.07.105
  20. Satlewal, A., R. Soni, M. G. H. Zaidi, Y. Shouche, and R. Goel. 2008. Comparative biodegradation of hdpe and ldpe using an indigenously developed microbial consortium. J. Microbiol. Biotechnol. 18: 477-482.
  21. Saurbrey, G. 1959. Use of quartz crystal vibrator for weighting thin films on a microbalance. Eur. Phys. J. A Hadrons Nuclei 155: 206-212. https://doi.org/10.1007/BF01337937
  22. Su, X. D., S. F. Y. Li, J. Kwang, and S. Low. 2000. Piezoelectric quartz crystal based screening test for porcine reproductive and respiratory syndrome virus infection in pigs. Analyst 125: 725-730. https://doi.org/10.1039/a909415f
  23. Ye, J., S. V. Letcher, and A. G. Rand 1997. Piezoelectric biosensor for detection of Salmonella Typhimurium. J. Food Sci. 62: 1067-1071. https://doi.org/10.1111/j.1365-2621.1997.tb15039.x

Cited by

  1. Advances in nano-scaled biosensors for biomedical applications vol.138, pp.16, 2012, https://doi.org/10.1039/c3an00438d
  2. Synergistic Enzyme Cocktail to Enhance Hydrolysis of Steam Exploded Wheat Straw at Pilot Scale vol.6, pp.None, 2012, https://doi.org/10.3389/fenrg.2018.00122
  3. Rice straw as a feedstock for biofuels: Availability, recalcitrance, and chemical properties vol.12, pp.1, 2012, https://doi.org/10.1002/bbb.1818