DOI QR코드

DOI QR Code

Visualization of Candidate Division OP3 Cocci in Limonene-Degrading Methanogenic Cultures

  • Rotaru, Amelia-Elena (Department of Microbiology, Max Planck Institute for Marine Microbiology) ;
  • Schauer, Regina (Department of Microbiology, Max Planck Institute for Marine Microbiology) ;
  • Probian, Christina (Department of Microbiology, Max Planck Institute for Marine Microbiology) ;
  • Mussmann, Marc (Department of Microbial Ecology, Max Planck Institute for Marine Microbiology) ;
  • Harder, Jens (Department of Microbiology, Max Planck Institute for Marine Microbiology)
  • Received : 2011.10.17
  • Accepted : 2011.12.05
  • Published : 2012.04.28

Abstract

Members of candidate division OP3 were detected in 16S rRNA gene clone libraries from methanogenic enrichment cultures that utilized limonene as a carbon and energy source. We developed probes for the visualization of OP3 cells. In situ hybridization experiments with newly designed OP3-specific probes [OP3-565 and Eub-338(VI)] revealed abundant small OP3 cocci attached to larger cells. Syntrophic Deltaproteobacteria, OP3 cells, and methanogens affiliating with Methanoculleus and Methanosaeta formed the limonene-degrading community.

Keywords

References

  1. Alfreider, A., C. Vogt, and W. Babel. 2002. Microbial diversity in an in situ reactor system treating monochlorobenzene contaminated groundwater as revealed by 16S ribosomal DNA analysis. Syst. Appl. Microbiol. 25: 232-240. https://doi.org/10.1078/0723-2020-00111
  2. Amann, R. I., B. J. Binder, R. J. Olson, S. W. Chisholm, R. Devereux, and D. A. Stahl. 1990. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56: 1919-1925.
  3. Boone, D. R., R. L. Johnson, and Y. Liu. 1989. Diffusion of the interspecies electron carriers H(2) and formate in methanogenic ecosystems and its implications in the measurement of K(m) for H(2) or formate uptake. Appl. Environ. Microbiol. 55: 1735-1741.
  4. Chouari, R., D. Le Paslier, P. Daegelen, P. Ginestet, J. Weissenbach, and A. Sghir. 2003. Molecular evidence for novel Planctomycete diversity in a municipal wastewater treatment plant. Appl. Environ. Microbiol. 69: 7354-7363. https://doi.org/10.1128/AEM.69.12.7354-7363.2003
  5. DeLong, E. F. 1992. Archaea in coastal marine environments. Proc. Natl. Acad. Sci. USA 89: 5685-5689. https://doi.org/10.1073/pnas.89.12.5685
  6. Glockner, J., M. Kube, P. M. Shrestha, M. Weber, F. O. Glockner, R. Reinhardt, and W. Liesack. 2010. Phylogenetic diversity and metagenomics of candidate division OP3. Environ. Microbiol. 12: 1218-1229. https://doi.org/10.1111/j.1462-2920.2010.02164.x
  7. Harder, J. and S. Foss. 1999. Anaerobic formation of the aromatic hydrocarbon p-cymene from monoterpenes by methanogenic enrichment cultures. Geomicrobiol. J. 16: 295-305. https://doi.org/10.1080/014904599270550
  8. Harmsen, H. J., B. L. Van Kuijk, C. M. Plugge, A. D. Akkermans, W. M. De Vos, and A. J. Stams. 1998. Syntrophobacter fumaroxidans sp. nov., a syntrophic propionate-degrading sulfatereducing bacterium. Int. J. Syst. Bacteriol. 48: 1383-1387. https://doi.org/10.1099/00207713-48-4-1383
  9. Hicks, R. E., R. I. Amann, and D. A. Stahl. 1992. Dual staining of natural bacterioplankton with 4',6-diamidino-2-phenylindole and fluorescent oligonucleotide probes targeting kingdom-level 16S ribosomal-RNA sequences. Appl. Environ. Microbiol. 58: 2158-2163.
  10. Holmes, D. E., K. P. Nevin, T. L. Woodard, A. D. Peacock, and D. R. Lovley. 2007. Prolixibacter bellariivorans gen. nov., sp. nov., a sugar-fermenting, psychrotolerant anaerobe of the phylum Bacteroidetes, isolated from a marine-sediment fuel cell. Int. J. Syst. Evol. Microbiol. 57: 701-707. https://doi.org/10.1099/ijs.0.64296-0
  11. Hugenholtz, P., C. Pitulle, K. L. Hershberger, and N. R. Pace. 1998. Novel division level bacterial diversity in a Yellowstone hot spring. J. Bacteriol. 180: 366-376.
  12. Hyatt, D. C., B. Youn, Y. Zhao, B. Santhamma, R. M. Coates, R. B. Croteau, and C. Kang. 2007. Structure of limonene synthase, a simple model for terpenoid cyclase catalysis. Proc. Natl. Acad. Sci. USA 104: 5360-5365. https://doi.org/10.1073/pnas.0700915104
  13. Jetten, M. S. M., A. J. M. Stams, and A. J. B. Zehnder. 1990. Acetate threshold values and acetate activating enzymes in methanogenic bacteria. FEMS Microbiol. Lett. 73: 339-344. https://doi.org/10.1111/j.1574-6968.1990.tb03958.x
  14. Kane, M. D., L. K. Poulsen, and D. A. Stahl. 1993. Monitoring the enrichment and isolation of sulfate-reducing bacteria by using oligonucleotide hybridization probes designed from environmentally derived 16S ribosomal-RNA sequences. Appl. Environ. Microbiol. 59: 682-686.
  15. Kreuzwieser, J., J. P. Schnitzler, and R. Steinbrecher. 1999. Biosynthesis of organic compounds emitted by plants. Plant Biol. 1: 149-159. https://doi.org/10.1111/j.1438-8677.1999.tb00238.x
  16. Loy, A., A. Lehner, N. Lee, J. Adamczyk, H. Meier, J. Ernst, et al. 2002. Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulfate-reducing prokaryotes in the environment. Appl. Environ. Microbiol. 68: 5064-5081. https://doi.org/10.1128/AEM.68.10.5064-5081.2002
  17. Loy, A., F. Maixner, M. Wagner, and M. Horn. 2007. ProbeBase - an online resource for rRNA-targeted oligonucleotide probes: New features 2007. Nucleic Acid Res. 35: D800-D804. https://doi.org/10.1093/nar/gkl856
  18. Ludwig, W., O. Strunk, R. Westram, L. Richter, H. Meier, Yadhukumar, et al. 2004. ARB: A software environment for sequence data. Nucleic Acid Res. 32: 1363-1371. https://doi.org/10.1093/nar/gkh293
  19. Manz, W., R. Amann, W. Ludwig, M. Vancanneyt, and K. H. Schleifer. 1996. Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum Cytophaga-Flavobacter-Bacteroides in the natural environment. Microbiology 142: 1097-1106. https://doi.org/10.1099/13500872-142-5-1097
  20. McInerney, M. J., C. G. Struchtemeyer, J. Sieber, H. Mouttaki, A. J. Stams, B. Schink, et al. 2008. Physiology, ecology, phylogeny, and genomics of microorganisms capable of syntrophic metabolism. Ann. N.Y. Acad. Sci. 1125: 58-72. https://doi.org/10.1196/annals.1419.005
  21. Pernthaler, A., J. Pernthaler, and R. Amann. 2002. Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl. Environ. Microbiol. 68: 3094-3101. https://doi.org/10.1128/AEM.68.6.3094-3101.2002
  22. Pilhofer, M., K. Rappl, C. Eckl, A. P. Bauer, W. Ludwig, K. H. Schleifer, and G. Petroni. 2008. Characterization and evolution of cell division and cell wall synthesis genes in the bacterial phyla Verrucomicrobia, Lentisphaerae, Chlamydiae, and Planctomycetes and phylogenetic comparison with rRNA genes. J. Bacteriol. 190: 3192-3202. https://doi.org/10.1128/JB.01797-07
  23. Pruesse, E., C. Quast, K. Knittel, B. M. Fuchs, W. Ludwig, J. Peplies, and F. O. Glockner. 2007. SILVA: A comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35: 7188-7196. https://doi.org/10.1093/nar/gkm864
  24. Rautio, M., E. Eerola, M. L. Vaisanen-Tunkelrott, D. Molitoris, P. Lawson, M. D. Collins, and H. Jousimies-Somer. 2003. Reclassification of Bacteroides putredinis (Weinberg et al., 1937) in a new genus Alistipes gen. nov., as Alistipes putredinis comb. nov., and description of Alistipes finegoldii sp. nov., from human sources. Syst. Appl. Microbiol. 26: 182-188. https://doi.org/10.1078/072320203322346029
  25. Rotaru, A. E., C. Probian, H. Wilkes, and J. Harder. 2010. Highly enriched Betaproteobacteria growing anaerobically with p-xylene and nitrate. FEMS Microbiol. Ecol. 71: 460-468. https://doi.org/10.1111/j.1574-6941.2009.00814.x
  26. Shigematsu, T., S. Era, Y. Mizuno, K. Ninomiya, Y. Kamegawa, S. Morimura, and K. Kida. 2006. Microbial community of a mesophilic propionate-degrading methanogenic consortium in chemostat cultivation analyzed based on 16S rRNA and acetate kinase genes. Appl. Microbiol. Biotechnol. 72: 401-415. https://doi.org/10.1007/s00253-005-0275-4
  27. Stackebrandt, E. and J. Ebers. 2006. Taxonomic parameters revisited: Tarnished gold standards. Microbiol. Today 33: 153-156.
  28. Stahl, D. A. and R. Amann. 1991. Development and application of nucleic acid probes. In E. Stackebrandt and M. Goodfellow (eds.). Nucleic Acid Techniques in Bacterial Systematic. John Wiley & Sons Ltd, Chichester, England.
  29. Tang, Y. Q., T. Shigematsu, S. Morimura, and K. Kida. 2007. Effect of dilution rate on the microbial structure of a mesophilic butyrate-degrading methanogenic community during continuous cultivation. Appl. Microbiol. Biotechnol. 75: 451-465. https://doi.org/10.1007/s00253-006-0819-2
  30. Thiele, J. H. and J. G. Zeikus. 1988. Control of interspecies electron flow during anaerobic digestion: Significance of formate transfer versus hydrogen transfer during syntrophic methanogenesis in flocs. Appl. Environ. Microbiol. 54: 20-29.
  31. Wagner, M. and M. Horn. 2006. The Planctomycetes, Verrucomicrobia, Chlamydiae and sister phyla comprise a superphylum with biotechnological and medical relevance. Curr. Opin. Biotechnol. 17: 241-249. https://doi.org/10.1016/j.copbio.2006.05.005
  32. Zellner, G., P. Messner, J. Winter, and E. Stackebrandt. 1998. Methanoculleus palmolei sp. nov., an irregularly coccoid methanogen from an anaerobic digester treating wastewater of a palm oil plant in North-Sumatra, Indonesia. Int. J. Syst. Bacteriol. 48: 1111-1117. https://doi.org/10.1099/00207713-48-4-1111

Cited by

  1. Anaerobic Oxidation of Ethene Coupled to Sulfate Reduction in Microcosms and Enrichment Cultures vol.47, pp.21, 2013, https://doi.org/10.1021/es4029765
  2. Diverse sulfate-reducing bacteria of the Desulfosarcina/Desulfococcus clade are the key alkane degraders at marine seeps vol.8, pp.10, 2012, https://doi.org/10.1038/ismej.2014.51
  3. Anaerobic degradation of cyclohexane by sulfate-reducing bacteria from hydrocarbon-contaminated marine sediments vol.6, pp.None, 2012, https://doi.org/10.3389/fmicb.2015.00116
  4. A diverse uncultivated microbial community is responsible for organic matter degradation in the Black Sea sulphidic zone vol.23, pp.6, 2012, https://doi.org/10.1111/1462-2920.14902