DOI QR코드

DOI QR Code

Genetic and Phenotypic Diversity of Carbofuran-Degrading Bacteria Isolated from Agricultural Soils

  • Shin, Dong-Hyeon (Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Kim, Dong-Uk (Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Seong, Chi-Nam (Department of Biology, Sunchon National University) ;
  • Song, Hong-Gyu (Division of Biological Sciences, Kangwon National University) ;
  • Ka, Jong-Ok (Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University)
  • Received : 2011.08.31
  • Accepted : 2011.12.08
  • Published : 2012.04.28

Abstract

Thirty-seven carbofuran-degrading bacteria were isolated from agricultural soils, and their genetic and phenotypic characteristics were investigated. The isolates were able to utilize carbofuran as a sole source of carbon and energy. Analysis of the 16S rRNA gene sequence indicated that the isolates were related to members of the genera Rhodococcus, Sphingomonas, and Sphingobium, including new types of carbofuran-degrading bacteria, Bosea and Microbacterium. Among the 37 isolates, 15 different chromosomal DNA patterns were obtained by polymerase chain reaction (PCR) amplification of repetitive extragenic palindromic (REP) sequences. Five of the 15 representative isolates were able to degrade carbofuran phenol, fenoxycarb, and carbaryl, in addition to carbofuran. Ten of the 15 representative isolates had 1 to 8 plasmids. Among the 10 plasmid-containing isolates, plasmid-cured strains were obtained from 5 strains. The cured strains could not degrade carbofuran and other pesticides anymore, suggesting that the carbofuran degradative genes were on the plasmid DNAs in these strains. When analyzed with PCR amplification and dot-blot hybridization using the primers targeting for the previously reported carbofuran hydrolase gene (mcd), all of the isolates did not show any positive signals, suggesting that their carbofuran hydrolase genes had no significant sequence homology with the mcd gene.

Keywords

References

  1. Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
  2. Chapalamadugu, S. and G. R. Chaudhry. 1992. Microbiological and biotechnological aspects of metabolism of carbamates and organophosphates. Crit. Rev. Biotechnol. 12: 357-389. https://doi.org/10.3109/07388559209114232
  3. Chaudhry, G. R. and A. N. Ali. 1988. Bacterial metabolism of carbofuran. Appl. Environ. Microbiol. 54: 1414-1419.
  4. de Bruijn, F. J. 1992. Use of repetitive (repetitive extragenic palindromic and enterobacterial repetitive intergeneric consensus) sequences and the polymerase chain reaction to fingerprint the genomes of Rhizobium meliloti isolates and other soil bacteria. Appl. Environ. Microbiol. 58: 2180-2187.
  5. Desaint, S., A. Hartmann, N. R. Parekh, and J. C. Fournier. 2000. Genetic diversity of carbofuran-degrading soil bacteria. FEMS Microbiol. Ecol. 34: 173-180. https://doi.org/10.1111/j.1574-6941.2000.tb00767.x
  6. EPA. 2000. http://www.epa.gov/REDs/factsheets/p155fct.pdf.
  7. Fahmy, M. A. H., T. R. Fukuto, R. O. Myers, and R. B. March. 1970. The selective toxicity of new N-phosphorothioylcarbamate esters. J. Agric. Food Chem. 18: 793-796. https://doi.org/10.1021/jf60171a014
  8. Feng, X., L. T. Ou, and A. Ogram. 1997. Plasmid-mediated mineralization of carbofuran by Sphingomonas sp. strain CF06. Appl. Environ. Microbiol. 63: 1332-1337.
  9. Hardy, K. G. 1993. Plasmid: A Practical Approach, pp. 99-100. 2nd Ed. Oxford University Press, Walton Street, New York.
  10. Head, I. M., R. B. Cain, and D. L. Suett. 1992. Characterization of a carbofuran-degrading bacterium and investigation of the role of plasmids in catabolism of the insecticide carbofuran. Arch. Microbiol. 158: 302-308. https://doi.org/10.1007/BF00245249
  11. Kado, C. I. and S. T. Liu. 1981. Rapid procedure for detection and isolation of large and small plasmids. J. Bacteriol. 145: 1365-1373.
  12. Karns, J. S., W. W. Mulbry, J. O. Nelson, and P. C. Kearney. 1986. Metabolism of carbofuran by a pure bacterial culture. Pestic. Biochem. Physiol. 25: 211-217. https://doi.org/10.1016/0048-3575(86)90048-9
  13. Karpouzas, D. G., A. Walker, R. J. Froud-Williams, and D. SH Drennan. 1999. Evidence for the enhanced biodegradation of ethoprophos and carbofuran in soils from Greece and the UK. Pestic. Sci. 55: 301-311. https://doi.org/10.1002/(SICI)1096-9063(199903)55:3<301::AID-PS897>3.0.CO;2-F
  14. Karpouzas, D. G., J. A. W. Morgan, and A. Walker. 2000. Isolation and characterization of 23 carbofuran-degrading bacteria from soils from distant geographical areas. Lett. Appl. Microbiol. 31: 353-358. https://doi.org/10.1046/j.1472-765x.2000.00823.x
  15. Kim, I. S., J. Y. Ryu, H. G. Hur, M. B. Gu, S. D. Kim, and J. H. Shim. 2004. Sphingomonas sp. strain SB5 degrades carbofuran to a new metabolite by hydrolysis at the furanyl ring. J. Agric. Food Chem. 52: 2309-2314. https://doi.org/10.1021/jf035502l
  16. Kim, M. S., J. H. Ahn, M. K. Jung, J. H. Yu, D. H. Joo, M. C. Kim, et al. 2005. Molecular and cultivation-based characterization of bacterial structure in rice field soil. J. Microbiol. Biotechnol. 15: 1087-1093.
  17. Kim, T. S., M. S. Kim, M. K. Jung, M. J. Joe, J. H. Ahn, K. H. Oh, et al. 2005. Analysis of plasmid pJP4 horizontal transfer and its impact on bacterial community structure in natural soil. J. Microbiol. Biotechnol. 15: 376-383.
  18. Korea Crop Protection Association. 2010. Agrochemical Year Book 2010.
  19. Lane, D. J. 1991. 16S/23S rRNA sequencing, pp. 115-148. In E. Stackebrandt and M. Goodfellow (eds.). Nucleic Acid Techniques in Bacterial Systematics. John Wiley and Sons, Chichester, England.
  20. Maidak, B. L., J. R. Cole, T. G. Lilburn, C. T. Parker Jr., P. R. Saxman, J. M. Stredwick, et al. 2000. The RDP (Ribosomal Database Project) continues. Nucleic Acids Res. 28: 173-174. https://doi.org/10.1093/nar/28.1.173
  21. Parekh, N. R., A. Hartmann, and J. C. Fournier. 1996. PCR detection of the mcd gene and evidence of sequence homology between the degradative genes and plasmids from diverse carbofuran-degrading bacteria. Soil Biol. Biochem. 28: 1797-1804. https://doi.org/10.1016/S0038-0717(96)00286-6
  22. Park, H. D. and J. O. Ka. 2003. Genetic and phenotypic diversity of dichlorprop-degrading bacteria isolated from soil. J. Microbiol. 41: 7-15.
  23. Park, I. H. and J. O. Ka. 2003. Isolation and characterization of 4-(2,4-dichlorophenoxy) butyric acid-degrading bacteria from agricultural soil. J. Microbiol. Biotechnol. 13: 243-250.
  24. Plangklang, P. and A. Reungsang. 2011. Bioaugmentation of carbofuran residues in soil by Burkholderia cepacia PCL3: A small-scale field study. Int. Biodeterior. Biodegrad. 65: 902-905. https://doi.org/10.1016/j.ibiod.2011.02.011
  25. Rama Krishna, K. and L. Philip. 2011. Bioremediation of single and mixture of pesticide-contaminated soils by mixed pesticide-enriched cultures. Appl. Biochem. Biotechnol. 164: 1257-1277. https://doi.org/10.1007/s12010-011-9211-5
  26. Ramanand, K., M. Sharmila, N. Singh, and N. Sethunathan. 1991. Metabolism of carbamate insecticides by resting cells and cell-free preparations of a soil bacterium, Arthrobacter sp. Bull. Environ. Contam. Toxicol. 46: 380-386. https://doi.org/10.1007/BF01688935
  27. Ramanand, K., M. Sharmila, and N. Sethunathan. 1988. Mineralization of carbofuran by a soil bacterium. Appl. Environ. Microbiol. 54: 2129-2133.
  28. Sukop, M. and C. G. Cogger. 1992. Adsorption of carbofuran, metalaxyl, and simazine: Koc evalution and relation to soil transport. J. Environ. Sci. Health B27: 565-590.
  29. Tomasek, P. H. and J. S. Karns. 1989. Cloning of a carbofuran hydrolase gene from Achromobacter sp. strain WM111 and its expression in Gram-negative bacteria. J. Bacteriol. 171: 4038-4044. https://doi.org/10.1128/jb.171.7.4038-4044.1989
  30. Topp, E., R. S. Hanson, D. B. Ringelberg, D. C. White, and R. Wheatcroft. 1993. Isolation and characterization of an N-methylcarbamate insecticide-degrading methylotrophic bacterium. Appl. Environ. Microbiol. 59: 3339-3349.
  31. Trotter, D. M., R. A. Kent, and M. P. Wong. 1991. Aquatic fate and effect of carbofuran. Crit. Rev. Environ. Contam. 21: 137-176. https://doi.org/10.1080/10643389109388412
  32. Yan, Q. X., Q. Hong, P. Han, X. J. Dong, Y. J. Shen, and S. P. Li. 2007. Isolation and characterization of a carbofuran-degrading strain Novosphingobium sp. FND-3. FEMS Microbiol. Lett. 271: 207-213. https://doi.org/10.1111/j.1574-6968.2007.00718.x

Cited by

  1. Distinct Phyllosphere Bacterial Communities on Arabidopsis Wax Mutant Leaves vol.8, pp.11, 2012, https://doi.org/10.1371/journal.pone.0078613
  2. Genetic and metabolic analysis of the carbofuran catabolic pathway in Novosphingobium sp. KN65.2 vol.98, pp.19, 2012, https://doi.org/10.1007/s00253-014-5858-5
  3. Expanded insecticide catabolic activity gained by a single nucleotide substitution in a bacterial carbamate hydrolase gene vol.18, pp.12, 2012, https://doi.org/10.1111/1462-2920.13409
  4. Biodegradation ofN-methylatedcarbamates by free and immobilized cells of newly isolated strainEnterobacter cloacaestrain TA7 vol.21, pp.3, 2012, https://doi.org/10.1080/10889868.2017.1404964
  5. Impact of oxytetracycline and bacterial bioaugmentation on the efficiency and microbial community structure of a pesticide-degrading biomixture vol.25, pp.12, 2012, https://doi.org/10.1007/s11356-018-1436-1
  6. Phytoplankton Cultures for Tannin Biodegradation vol.230, pp.7, 2012, https://doi.org/10.1007/s11270-019-4199-5
  7. Microbiome responses during virulence adaptation by a phloem‐feeding insect to resistant near‐isogenic rice lines vol.9, pp.20, 2012, https://doi.org/10.1002/ece3.5699
  8. Efficacy of soil-borne Enterobacter sp. for carbofuran degradation: HPLC quantitation of degradation rate vol.60, pp.5, 2020, https://doi.org/10.1002/jobm.201900570