DOI QR코드

DOI QR Code

Biochemical and Molecular Characterization of High Population Density Bacteria Isolated from Sunflower

  • Received : 2011.09.07
  • Accepted : 2011.11.27
  • Published : 2012.04.28

Abstract

Natural and beneficial associations between plants and bacteria have demonstrated potential commercial application for several agricultural crops. The sunflower has acquired increasing importance in Brazilian agribusiness owing to its agronomic characteristics such as the tolerance to edaphoclimatic variations, resistance to pests and diseases, and adaptation to the implements commonly used for maize and soybean, as well as the versatility of the products and by-products obtained from its cultivation. A study of the cultivable bacteria associated with two sunflower cultivars, using classical microbiological methods, successfully obtained isolates from different plant tissues (roots, stems, florets, and rhizosphere). Out of 57 plant-growth-promoting isolates obtained, 45 were identified at the genus level and phylogenetically positioned based on 16S rRNA gene sequencing: 42 Bacillus (B. subtilis, B. cereus, B. thuringiensis, B. pumilus, B. megaterium, and Bacillus sp.) and 3 Methylobacterium komagatae. Random amplified polymorphic DNA (RAPD) analysis showed a broad diversity among the Bacillus isolates, which clustered into 2 groups with 75% similarity and 13 subgroups with 85% similarity, suggesting that the genetic distance correlated with the source of isolation. The isolates were also analyzed for certain growth-promoting activities. Auxin synthesis was widely distributed among the isolates, with values ranging from 93.34 to 1653.37 ${\mu}M$ auxin per ${\mu}g$ of protein. The phosphate solubilization index ranged from 1.25 to 3.89, and siderophore index varied from 1.15 to 5.25. From a total of 57 isolates, 3 showed an ability to biologically fix atmospheric nitrogen, and 7 showed antagonism against the pathogen Sclerotinia sclerotiorum. The results of biochemical characterization allowed identification of potential candidates for the development of biofertilizers targeted to the sunflower crop.

Keywords

References

  1. Akopianz, N., N. O. Bukanov, T. U. Westblom, S. Kresovich, and D. E. Berg. 1992. DNA diversity among clinical isolates of Helicobacter pylori detected by PCR-based RAPD fingerprinting. Nucleic Acids Res. 20: 5137-5142. https://doi.org/10.1093/nar/20.19.5137
  2. Araujo, F. F., A. A. Henning, and M. Hungria. 2005. Phytohormones and antibiotics produced by Bacillus subtilis and their effects on seed pathogenic fungi and on soybean root development. World J. Microbiol. Biotechnol. 21: 1639-1645. https://doi.org/10.1007/s11274-005-3621-x
  3. Bashan, Y. 1998. Inoculants of plant growth-promoting bacteria for use in agriculture. Biotech. Adv. 16: 729-770. https://doi.org/10.1016/S0734-9750(98)00003-2
  4. Beneduzi, A., D. Peres, L. K. Vargas, M. H. Bodanese-Zanettini, and L. M. P. Passaglia. 2008. Evaluation of genetic diversity and plant growth promoting activities of nitrogen-fixing bacilli isolated from rice fields in South Brazil. Appl. Soil Ecol. 39: 311-320. https://doi.org/10.1016/j.apsoil.2008.01.006
  5. Berg, G. 2009. Plant-microbe interactions promoting plant growth and health: Perspectives for controlled use of microorganisms in agriculture. Appl. Microbiol. Biotechnol. 84: 11-18. https://doi.org/10.1007/s00253-009-2092-7
  6. Boddey, R. M. and J. Dobereiner. 1995. Nitrogen fixation associated with grasses and cereals: Recent results and perspectives for the future research. Fertil. Res. 42: 241-250. https://doi.org/10.1007/BF00750518
  7. Dobereiner, J., V. O. Andrade, and V. L. D. Baldani. 1999. Protocolos para preparo de meios de cultura da Embrapa Agrobiologia. Embrapa Agrobiologia Documentos 110, Seropedica.
  8. Fages, J. and J. F. Arsac. 1991. Sunflower inoculation with Azospirillum and other plant growth promoting rhizobacteria. Plant Soil 137: 87-90. https://doi.org/10.1007/BF02187437
  9. Forchetti, G., O. Masciarelli, S. Alemano, D. Alvarez, and G. Abdala. 2007. Endophytic bacteria in sunflower (Helianthus annuus L.): Isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl. Microbiol. Biotechnol. 76: 1145-1152. https://doi.org/10.1007/s00253-007-1077-7
  10. Furnkranz, M., H. Muller, and G. Berg. 2009. Characterization of plant growth promoting bacteria from crops in Bolivia. J. Plant Dis. Protect. 116: 149-155. https://doi.org/10.1007/BF03356303
  11. Glick, B. R. 1995. The enhancement of plant growth by free-living bacteria. Can. J. Microbiol. 41: 109-117. https://doi.org/10.1139/m95-015
  12. Graner, G., P. Persson, J. Meijer, and S. Alstrom. 2003. A study on microbial diversity in different cultivars of Brassica napus in relation to its wild pathogen, Verticillium longisporum. FEMS Microbiol. Lett. 224: 269-276. https://doi.org/10.1016/S0378-1097(03)00449-X
  13. Hall, T. A. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95-98.
  14. Hallmann, J., A. Quadt-Hallmann, W. F. Mahaffey, and J. W. Kloepper. 1997. Bacterial endophytes in agricultural crops. Can. J. Microbiol. 43: 895-914. https://doi.org/10.1139/m97-131
  15. Huey, B. and J. Hall. 1989. Hypervariable DNA fingerprinting in Escherichia coli: Minisatelite probe from bacteriophage M13. J. Bacteriol. 171: 2528-2532. https://doi.org/10.1128/jb.171.5.2528-2532.1989
  16. Ikeda, S., T. Okubo, M. Anda, H. Nakashita, M. Yasuda, S. Sato, et al. 2010. Community- and genome-based views of plant-associated bacteria: Plant-bacterial interactions in soybeans and rice. Plant Cell Physiol. 51: 1398-1410. https://doi.org/10.1093/pcp/pcq119
  17. Jayashree, S., P. Vadivukkarasi, K. Anand, Y. Kato, and S. Seshadri. 2011. Evaluation of pink-pigmented facultative methylotrophic bacteria for phosphate solubilization. Arch. Microbiol. 193: 543-552. https://doi.org/10.1007/s00203-011-0691-z
  18. Kuklinsky-Sobral, J., W. L. Araujo, R. Mendes, I. O. Geraldi, A. A. Pizzirani-Kleiner, and J. L. Azevedo. 2004. Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ. Microbiol. 6: 1244-1251. https://doi.org/10.1111/j.1462-2920.2004.00658.x
  19. Lakshminarayana, K. 1993. Influence of Azotobacter on nitrogen nutrition of plants and crop productivity. Proc. lndian Nat. Sci. Acad. B59: 303-308.
  20. Larkin, M. A., G. Blackshields, N. P. Brown, R. Chenna, P. A. McGettigan, and H. McWilliam, et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948. https://doi.org/10.1093/bioinformatics/btm404
  21. Lucy, M., E. Reed, and B. R. Glick. 2004. Applications of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek 86: 1-25. https://doi.org/10.1023/B:ANTO.0000024903.10757.6e
  22. Lugtemberg, B. and F. Kamilova. 2009. Plant growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63: 541-556. https://doi.org/10.1146/annurev.micro.62.081307.162918
  23. Mangin, I., D. Corroler, A. Reinhardt, and M. Gueguen. 1999. Genetic diversity among dairy lactococcal strains investigated by polymerase chain reaction with three arbitrary primers. J. Appl. Microbiol. 86: 514-520. https://doi.org/10.1046/j.1365-2672.1999.00699.x
  24. Masirevic, S. and T. J. Gulya. 1992. Sclerotinia and Phomopsis - two devastating sunflower pathogens. Field Crop Res. 30: 271-300. https://doi.org/10.1016/0378-4290(92)90004-S
  25. Mathre, D. E., R. J. Cook, and N. W. Callan. 1999. From discovery to use: Traversing the world of commercializing biocontrol agents for plant disease control. Plant Dis. 83: 972-983. https://doi.org/10.1094/PDIS.1999.83.11.972
  26. Mavingui, P., G. Laguerre, O. Berge, and T. Heulin. 1992. Genetic and phenotypic diversity of Bacillus polymyxa in soil and in the wheat rhizosphere. Appl. Environ. Microbiol. 58: 1894-1903.
  27. Nautiyal, C. S., S. Bhadauria, P. Kumar, H. Lal, R. Mondal, and D. Verma. 2000. Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbiol. Lett. 182: 291-296. https://doi.org/10.1111/j.1574-6968.2000.tb08910.x
  28. Piceno, Y. M., P. A. Noble, and C. R. Lovell. 1999. Spatial and temporal assessment of diazitroph assemblage composition in vegetated salt marsh sediments using denaturing gradient gel eletrophoresis analysis. Microb. Ecol. 38: 157-167. https://doi.org/10.1007/s002489900164
  29. Rodrigues, E. P., L. S. Rodrigues, A. L. M. Oliveira, V. L. D. Baldani, K. R. S. Teixeira, S. Urquiaga, and V. M. Reis. 2008. Azospirillum amazonense inoculation: Effects on growth, yield and $N_2$ fixation of rice. Plant Soil 302: 249-261. https://doi.org/10.1007/s11104-007-9476-1
  30. Roesch, L. F. W., P. D. Quadros, F. A. O. Camargo, and E. W. Triplett. 2007. Screening of diazotrophic bacteria Azospirillum spp. for nitrogen fixation and auxin production in multiple field sites in southern Brazil. World J. Microbiol. Biotechnol. 23: 1377-1383. https://doi.org/10.1007/s11274-007-9376-9
  31. Ronquist, F. and J. P. Huelsenbeck. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572-1574. https://doi.org/10.1093/bioinformatics/btg180
  32. Rosch, C. and H. Bothe. 2005. Improved assessment of denitrifying, $N_2$-fixing, and total-community bacteria by terminal restriction fragment length polymorphism analysis using multiple restriction enzymes. Appl. Environ. Microbiol. 71: 2026-2035. https://doi.org/10.1128/AEM.71.4.2026-2035.2005
  33. Rosenblueth, M. and E. Martinez Romero. 2004. Rhizobium etli maize populations and their competitiveness for root colonization. Arch. Microbiol. 181: 337-344. https://doi.org/10.1007/s00203-004-0661-9
  34. Ryder, M. H., Y. Zhinong, T. E. Terrace, R. D. Rovira, T. Wenhua, R. L. Carrell, et al. 1999. Use of strains of Bacillus isolated in China to suppress take-all and Rhizoctonia root rot, and promote seedling growth of glasshouse-grown wheat in Australian soils. Soil Biol. Biochem. 31: 19-29.
  35. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, New York.
  36. Schauer, S. and U. Kutschera. 2008. Methylotrophic bacteria on the surfaces of field-grown sunflower plants: A biogeographic perspective. Theor. Biosci. 127: 23-29. https://doi.org/10.1007/s12064-007-0020-x
  37. Schwyn, B. and J. B. Neilands. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160: 47-56. https://doi.org/10.1016/0003-2697(87)90612-9
  38. Surette, M. A., A. V. Sturz, R. R. Lada, and J. Nowak. 2003. Bacterial endophytes in processing carrots (Daucus carota L. var. sativus): Their localization, population density, biodiversity and their effects on plant growth. Plant Soil 253: 381-390. https://doi.org/10.1023/A:1024835208421
  39. Vessey, J. K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255: 571-586. https://doi.org/10.1023/A:1026037216893
  40. Vogt, G. A., A. A. Balbinot Junior, and A. M. Souza. 2010. Divergencia genetica entre cultivares de girassol no planalto norte de Santa Catarina. Scientia Agraria 11: 307-315. https://doi.org/10.5380/rsa.v11i4.18265
  41. Wang, Q., G. M. Garrity, J. M. Tiedje, and J. R. Cole. 2007. Naïve Bayesian classifier for rapid assignment of rrna sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73: 5261-5267. https://doi.org/10.1128/AEM.00062-07
  42. Xie, G. H., Z. Cui, J. Yu, J. Yan, W. Hai, and Y. Steinberger. 2006. Identification of nif genes in $N_2$-fixing bacterial strains isolated from rice fields along the Yangtze River Plain. J. Basic Microbiol. 46: 56-63. https://doi.org/10.1002/jobm.200510513

Cited by

  1. Bacillus thuringiensis colonises plant roots in a phylogeny‐dependent manner vol.86, pp.3, 2013, https://doi.org/10.1111/1574-6941.12175
  2. The Use of Amino Sugars by Bacillus subtilis : Presence of a Unique Operon for the Catabolism of Glucosamine vol.8, pp.5, 2013, https://doi.org/10.1371/journal.pone.0063025
  3. Characterisation of endophyticBacillus thuringiensisstrains isolated from wheat plants as biocontrol agents against wheat flag smut vol.24, pp.8, 2014, https://doi.org/10.1080/09583157.2014.904502
  4. Crescimento de girassol em função da inoculação de sementes com bactérias endofíticas vol.44, pp.2, 2012, https://doi.org/10.1590/s1983-40632014000200008
  5. Growth stimulation and management of diseases of ornamental plants using phosphate solubilizing microorganisms: current perspective vol.38, pp.5, 2016, https://doi.org/10.1007/s11738-016-2133-7
  6. Diazotrophic bacilli isolated from the sunflower rhizosphere and the potential of Bacillus mycoides B38V as biofertiliser vol.168, pp.1, 2016, https://doi.org/10.1111/aab.12245
  7. Plant growth promotion properties of bacterial strains isolated from the rhizosphere of the Jerusalem artichoke (Helianthus tuberosusL.) adapted to saline-alkaline soils and their effect on wheat grow vol.63, pp.3, 2017, https://doi.org/10.1139/cjm-2016-0511
  8. Improved Maize Growth in Condition Controlled by PGPR Inoculation on Ferruginous Soil in Central Benin vol.10, pp.12, 2012, https://doi.org/10.4236/fns.2019.1012004
  9. Biocontrol of Citrus Canker Disease Caused by Xanthomonas citri subsp. citri Using an Endophytic Bacillus thuringiensis vol.35, pp.5, 2012, https://doi.org/10.5423/ppj.oa.03.2019.0060
  10. Phenotypic and genotypic characterization of endophytic bacteria associated with transgenic and non-transgenic soybean plants vol.201, pp.8, 2012, https://doi.org/10.1007/s00203-019-01672-6
  11. Interspecies Comparison of the Bacterial Response to Allicin Reveals Species‐Specific Defense Strategies vol.19, pp.24, 2019, https://doi.org/10.1002/pmic.201900064
  12. Diversity and plant growth-promoting functions of diazotrophic/N-scavenging bacteria isolated from the soils and rhizospheres of two species of Solanum vol.15, pp.1, 2020, https://doi.org/10.1371/journal.pone.0227422
  13. In situ similis ” Culturing of Plant Microbiota: A Novel Simulated Environmental Method Based on Plant Leaf Blades as Nutritional Pads vol.11, pp.None, 2012, https://doi.org/10.3389/fmicb.2020.00454
  14. Differential impacts of plant growth-promoting bacteria (PGPB) on seeds of neotropical tree species with contrasting tolerance to shade vol.34, pp.1, 2012, https://doi.org/10.1007/s00468-019-01902-w
  15. Combined Effects of Phosphate Solubilizing Bacteria and Nanosilica on the Growth of Land Cress Plant vol.20, pp.1, 2012, https://doi.org/10.1007/s42729-019-00126-8
  16. Plant growth-promoting bacteria improve leaf antioxidant metabolism of drought-stressed Neotropical trees vol.251, pp.4, 2012, https://doi.org/10.1007/s00425-020-03373-7