References
- Akopianz, N., N. O. Bukanov, T. U. Westblom, S. Kresovich, and D. E. Berg. 1992. DNA diversity among clinical isolates of Helicobacter pylori detected by PCR-based RAPD fingerprinting. Nucleic Acids Res. 20: 5137-5142. https://doi.org/10.1093/nar/20.19.5137
- Araujo, F. F., A. A. Henning, and M. Hungria. 2005. Phytohormones and antibiotics produced by Bacillus subtilis and their effects on seed pathogenic fungi and on soybean root development. World J. Microbiol. Biotechnol. 21: 1639-1645. https://doi.org/10.1007/s11274-005-3621-x
- Bashan, Y. 1998. Inoculants of plant growth-promoting bacteria for use in agriculture. Biotech. Adv. 16: 729-770. https://doi.org/10.1016/S0734-9750(98)00003-2
- Beneduzi, A., D. Peres, L. K. Vargas, M. H. Bodanese-Zanettini, and L. M. P. Passaglia. 2008. Evaluation of genetic diversity and plant growth promoting activities of nitrogen-fixing bacilli isolated from rice fields in South Brazil. Appl. Soil Ecol. 39: 311-320. https://doi.org/10.1016/j.apsoil.2008.01.006
- Berg, G. 2009. Plant-microbe interactions promoting plant growth and health: Perspectives for controlled use of microorganisms in agriculture. Appl. Microbiol. Biotechnol. 84: 11-18. https://doi.org/10.1007/s00253-009-2092-7
- Boddey, R. M. and J. Dobereiner. 1995. Nitrogen fixation associated with grasses and cereals: Recent results and perspectives for the future research. Fertil. Res. 42: 241-250. https://doi.org/10.1007/BF00750518
- Dobereiner, J., V. O. Andrade, and V. L. D. Baldani. 1999. Protocolos para preparo de meios de cultura da Embrapa Agrobiologia. Embrapa Agrobiologia Documentos 110, Seropedica.
- Fages, J. and J. F. Arsac. 1991. Sunflower inoculation with Azospirillum and other plant growth promoting rhizobacteria. Plant Soil 137: 87-90. https://doi.org/10.1007/BF02187437
- Forchetti, G., O. Masciarelli, S. Alemano, D. Alvarez, and G. Abdala. 2007. Endophytic bacteria in sunflower (Helianthus annuus L.): Isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl. Microbiol. Biotechnol. 76: 1145-1152. https://doi.org/10.1007/s00253-007-1077-7
- Furnkranz, M., H. Muller, and G. Berg. 2009. Characterization of plant growth promoting bacteria from crops in Bolivia. J. Plant Dis. Protect. 116: 149-155. https://doi.org/10.1007/BF03356303
- Glick, B. R. 1995. The enhancement of plant growth by free-living bacteria. Can. J. Microbiol. 41: 109-117. https://doi.org/10.1139/m95-015
- Graner, G., P. Persson, J. Meijer, and S. Alstrom. 2003. A study on microbial diversity in different cultivars of Brassica napus in relation to its wild pathogen, Verticillium longisporum. FEMS Microbiol. Lett. 224: 269-276. https://doi.org/10.1016/S0378-1097(03)00449-X
- Hall, T. A. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95-98.
- Hallmann, J., A. Quadt-Hallmann, W. F. Mahaffey, and J. W. Kloepper. 1997. Bacterial endophytes in agricultural crops. Can. J. Microbiol. 43: 895-914. https://doi.org/10.1139/m97-131
- Huey, B. and J. Hall. 1989. Hypervariable DNA fingerprinting in Escherichia coli: Minisatelite probe from bacteriophage M13. J. Bacteriol. 171: 2528-2532. https://doi.org/10.1128/jb.171.5.2528-2532.1989
- Ikeda, S., T. Okubo, M. Anda, H. Nakashita, M. Yasuda, S. Sato, et al. 2010. Community- and genome-based views of plant-associated bacteria: Plant-bacterial interactions in soybeans and rice. Plant Cell Physiol. 51: 1398-1410. https://doi.org/10.1093/pcp/pcq119
- Jayashree, S., P. Vadivukkarasi, K. Anand, Y. Kato, and S. Seshadri. 2011. Evaluation of pink-pigmented facultative methylotrophic bacteria for phosphate solubilization. Arch. Microbiol. 193: 543-552. https://doi.org/10.1007/s00203-011-0691-z
- Kuklinsky-Sobral, J., W. L. Araujo, R. Mendes, I. O. Geraldi, A. A. Pizzirani-Kleiner, and J. L. Azevedo. 2004. Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ. Microbiol. 6: 1244-1251. https://doi.org/10.1111/j.1462-2920.2004.00658.x
- Lakshminarayana, K. 1993. Influence of Azotobacter on nitrogen nutrition of plants and crop productivity. Proc. lndian Nat. Sci. Acad. B59: 303-308.
- Larkin, M. A., G. Blackshields, N. P. Brown, R. Chenna, P. A. McGettigan, and H. McWilliam, et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948. https://doi.org/10.1093/bioinformatics/btm404
- Lucy, M., E. Reed, and B. R. Glick. 2004. Applications of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek 86: 1-25. https://doi.org/10.1023/B:ANTO.0000024903.10757.6e
- Lugtemberg, B. and F. Kamilova. 2009. Plant growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63: 541-556. https://doi.org/10.1146/annurev.micro.62.081307.162918
- Mangin, I., D. Corroler, A. Reinhardt, and M. Gueguen. 1999. Genetic diversity among dairy lactococcal strains investigated by polymerase chain reaction with three arbitrary primers. J. Appl. Microbiol. 86: 514-520. https://doi.org/10.1046/j.1365-2672.1999.00699.x
- Masirevic, S. and T. J. Gulya. 1992. Sclerotinia and Phomopsis - two devastating sunflower pathogens. Field Crop Res. 30: 271-300. https://doi.org/10.1016/0378-4290(92)90004-S
- Mathre, D. E., R. J. Cook, and N. W. Callan. 1999. From discovery to use: Traversing the world of commercializing biocontrol agents for plant disease control. Plant Dis. 83: 972-983. https://doi.org/10.1094/PDIS.1999.83.11.972
- Mavingui, P., G. Laguerre, O. Berge, and T. Heulin. 1992. Genetic and phenotypic diversity of Bacillus polymyxa in soil and in the wheat rhizosphere. Appl. Environ. Microbiol. 58: 1894-1903.
- Nautiyal, C. S., S. Bhadauria, P. Kumar, H. Lal, R. Mondal, and D. Verma. 2000. Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbiol. Lett. 182: 291-296. https://doi.org/10.1111/j.1574-6968.2000.tb08910.x
- Piceno, Y. M., P. A. Noble, and C. R. Lovell. 1999. Spatial and temporal assessment of diazitroph assemblage composition in vegetated salt marsh sediments using denaturing gradient gel eletrophoresis analysis. Microb. Ecol. 38: 157-167. https://doi.org/10.1007/s002489900164
-
Rodrigues, E. P., L. S. Rodrigues, A. L. M. Oliveira, V. L. D. Baldani, K. R. S. Teixeira, S. Urquiaga, and V. M. Reis. 2008. Azospirillum amazonense inoculation: Effects on growth, yield and
$N_2$ fixation of rice. Plant Soil 302: 249-261. https://doi.org/10.1007/s11104-007-9476-1 - Roesch, L. F. W., P. D. Quadros, F. A. O. Camargo, and E. W. Triplett. 2007. Screening of diazotrophic bacteria Azospirillum spp. for nitrogen fixation and auxin production in multiple field sites in southern Brazil. World J. Microbiol. Biotechnol. 23: 1377-1383. https://doi.org/10.1007/s11274-007-9376-9
- Ronquist, F. and J. P. Huelsenbeck. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572-1574. https://doi.org/10.1093/bioinformatics/btg180
-
Rosch, C. and H. Bothe. 2005. Improved assessment of denitrifying,
$N_2$ -fixing, and total-community bacteria by terminal restriction fragment length polymorphism analysis using multiple restriction enzymes. Appl. Environ. Microbiol. 71: 2026-2035. https://doi.org/10.1128/AEM.71.4.2026-2035.2005 - Rosenblueth, M. and E. Martinez Romero. 2004. Rhizobium etli maize populations and their competitiveness for root colonization. Arch. Microbiol. 181: 337-344. https://doi.org/10.1007/s00203-004-0661-9
- Ryder, M. H., Y. Zhinong, T. E. Terrace, R. D. Rovira, T. Wenhua, R. L. Carrell, et al. 1999. Use of strains of Bacillus isolated in China to suppress take-all and Rhizoctonia root rot, and promote seedling growth of glasshouse-grown wheat in Australian soils. Soil Biol. Biochem. 31: 19-29.
- Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, New York.
- Schauer, S. and U. Kutschera. 2008. Methylotrophic bacteria on the surfaces of field-grown sunflower plants: A biogeographic perspective. Theor. Biosci. 127: 23-29. https://doi.org/10.1007/s12064-007-0020-x
- Schwyn, B. and J. B. Neilands. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160: 47-56. https://doi.org/10.1016/0003-2697(87)90612-9
- Surette, M. A., A. V. Sturz, R. R. Lada, and J. Nowak. 2003. Bacterial endophytes in processing carrots (Daucus carota L. var. sativus): Their localization, population density, biodiversity and their effects on plant growth. Plant Soil 253: 381-390. https://doi.org/10.1023/A:1024835208421
- Vessey, J. K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255: 571-586. https://doi.org/10.1023/A:1026037216893
- Vogt, G. A., A. A. Balbinot Junior, and A. M. Souza. 2010. Divergencia genetica entre cultivares de girassol no planalto norte de Santa Catarina. Scientia Agraria 11: 307-315. https://doi.org/10.5380/rsa.v11i4.18265
- Wang, Q., G. M. Garrity, J. M. Tiedje, and J. R. Cole. 2007. Naïve Bayesian classifier for rapid assignment of rrna sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73: 5261-5267. https://doi.org/10.1128/AEM.00062-07
-
Xie, G. H., Z. Cui, J. Yu, J. Yan, W. Hai, and Y. Steinberger. 2006. Identification of nif genes in
$N_2$ -fixing bacterial strains isolated from rice fields along the Yangtze River Plain. J. Basic Microbiol. 46: 56-63. https://doi.org/10.1002/jobm.200510513
Cited by
- Bacillus thuringiensis colonises plant roots in a phylogeny‐dependent manner vol.86, pp.3, 2013, https://doi.org/10.1111/1574-6941.12175
- The Use of Amino Sugars by Bacillus subtilis : Presence of a Unique Operon for the Catabolism of Glucosamine vol.8, pp.5, 2013, https://doi.org/10.1371/journal.pone.0063025
- Characterisation of endophyticBacillus thuringiensisstrains isolated from wheat plants as biocontrol agents against wheat flag smut vol.24, pp.8, 2014, https://doi.org/10.1080/09583157.2014.904502
- Crescimento de girassol em função da inoculação de sementes com bactérias endofíticas vol.44, pp.2, 2012, https://doi.org/10.1590/s1983-40632014000200008
- Growth stimulation and management of diseases of ornamental plants using phosphate solubilizing microorganisms: current perspective vol.38, pp.5, 2016, https://doi.org/10.1007/s11738-016-2133-7
- Diazotrophic bacilli isolated from the sunflower rhizosphere and the potential of Bacillus mycoides B38V as biofertiliser vol.168, pp.1, 2016, https://doi.org/10.1111/aab.12245
- Plant growth promotion properties of bacterial strains isolated from the rhizosphere of the Jerusalem artichoke (Helianthus tuberosusL.) adapted to saline-alkaline soils and their effect on wheat grow vol.63, pp.3, 2017, https://doi.org/10.1139/cjm-2016-0511
- Improved Maize Growth in Condition Controlled by PGPR Inoculation on Ferruginous Soil in Central Benin vol.10, pp.12, 2012, https://doi.org/10.4236/fns.2019.1012004
- Biocontrol of Citrus Canker Disease Caused by Xanthomonas citri subsp. citri Using an Endophytic Bacillus thuringiensis vol.35, pp.5, 2012, https://doi.org/10.5423/ppj.oa.03.2019.0060
- Phenotypic and genotypic characterization of endophytic bacteria associated with transgenic and non-transgenic soybean plants vol.201, pp.8, 2012, https://doi.org/10.1007/s00203-019-01672-6
- Interspecies Comparison of the Bacterial Response to Allicin Reveals Species‐Specific Defense Strategies vol.19, pp.24, 2019, https://doi.org/10.1002/pmic.201900064
- Diversity and plant growth-promoting functions of diazotrophic/N-scavenging bacteria isolated from the soils and rhizospheres of two species of Solanum vol.15, pp.1, 2020, https://doi.org/10.1371/journal.pone.0227422
- “ In situ similis ” Culturing of Plant Microbiota: A Novel Simulated Environmental Method Based on Plant Leaf Blades as Nutritional Pads vol.11, pp.None, 2012, https://doi.org/10.3389/fmicb.2020.00454
- Differential impacts of plant growth-promoting bacteria (PGPB) on seeds of neotropical tree species with contrasting tolerance to shade vol.34, pp.1, 2012, https://doi.org/10.1007/s00468-019-01902-w
- Combined Effects of Phosphate Solubilizing Bacteria and Nanosilica on the Growth of Land Cress Plant vol.20, pp.1, 2012, https://doi.org/10.1007/s42729-019-00126-8
- Plant growth-promoting bacteria improve leaf antioxidant metabolism of drought-stressed Neotropical trees vol.251, pp.4, 2012, https://doi.org/10.1007/s00425-020-03373-7