DOI QR코드

DOI QR Code

Chemical and Biological Controls of Balloon Flower Stem Rots Caused by Rhizoctonia solani and Sclerotinia sclerotiorum

  • Lee, Young-Hee (Department of Horticultural Science, Gyeongnam National University of Science and Technology) ;
  • Cho, Young-Son (Division of Agronomy and Herbal Medicine Resources, Gyeongnam National University of Science and Technology) ;
  • Lee, Shin-Woo (Division of Agronomy and Herbal Medicine Resources, Gyeongnam National University of Science and Technology) ;
  • Hong, Jeum-Kyu (Department of Horticultural Science, Gyeongnam National University of Science and Technology)
  • 투고 : 2011.10.22
  • 심사 : 2012.02.21
  • 발행 : 2012.06.01

초록

Stem rots caused by Rhizoctonia solani and Sclerotinia sclerotiorum have been known as devastating diseases in balloon flower plants. Antifungal activities of four fungicides, azoxystrobin, polyoxin B, trifloxystrobin and validamycin A were evaluated in vitro, showing effective suppression with mycelial growth of the fungal isolates on PDA media. Efficacies of the four fungicides were also demonstrated in stem tissues of balloon flower plants against R. solani and S. sclerotiorum. A commercially available Bacillus subtilis strain Y1336 was tested in terms of antagonistic biological control of stem rot disease of balloon flower plants. The bacterial strain revealed its antifungal activities against R. solani and S. sclerotiorum demonstrated by dual culture tests using paper discs and two plant pathogenic fungi on PDA media, as well as by plant inoculation assay, indicating that this antagonistic bacterial strain can be incorporated into disease management program for balloon flower stem rot diseases together with the four chemical fungicides.

키워드

참고문헌

  1. Asaka, O. and Shoda, M. 1996. Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl. Environ. Microbiol. 62:4081-4085.
  2. Benigni, M. and Bompeix, G. 2010. Chemical and biological control of Sclerotinia sclerotiorum in witloof chicory culture. Pest Manag. Sci. 66:1332-1336. https://doi.org/10.1002/ps.2019
  3. Berta, G., Sampo, S., Gamalero, E., Massa, N. and Lemanceau, P. 2005. Suppression of Rhizoctonia root-rot of tomato by Glomus mossae BEG12 and Pseudomonas fluorescens A6RI is associated with their effect on the pathogen growth and on the root morphogenesis. Eur. J. Plant Pathol. 111:279-288. https://doi.org/10.1007/s10658-004-4585-7
  4. Bolton, M. D., Panella, L., Campbell, L. and Khan, M. F. R. 2010. Temperature, moisture, and fungicide effects in managing Rhizoctonia root and crown rot of sugar beet. Phytopathology 100:689-697. https://doi.org/10.1094/PHYTO-100-7-0689
  5. Bradley, C. A., Lamey, H. A., Endres, G. J., Henson, R. A., Hanson, B. K., McKay, K. R., Halvorson, M., LeGare, D. G. and Porter, P. M. 2006. Efficacy of fungicides for control of Scelrotinia stem rot of canola. Plant Dis. 90:1129-1134. https://doi.org/10.1094/PD-90-1129
  6. Burpee, L. and Latin, R. 2008. Reassessment of fungicide synergism for control of dollar spot. Plant Dis. 92:601-606. https://doi.org/10.1094/PDIS-92-4-0601
  7. Campion, C., Chatot, C., Perraton, B. and Andrivon, D. 2003. Anastomosis groups, pathogenicity and sensitivity to fungicides of Rhizoctonia solani isolates collected on potato crops in France. Eur. J. Plant Pathol. 109:983-992. https://doi.org/10.1023/B:EJPP.0000003829.83671.8f
  8. Cho, S. J. and Yun, H. D. 2005. Identification and molecular characterization of three isoforms of iturin produced by endophytic Bacillus sp. CY22. J. Life Sci. 15:1005-1012. https://doi.org/10.5352/JLS.2005.15.6.1005
  9. Cho, S. J., Lim, W. J., Hong, S. Y., Park, S. Y. and Yun, H. D. 2003. Endophytic colonization of balloon flower by antifungal strain Bacillus sp. CY22. Biosci. Biotechnol. Biochem. 67: 2132-2138. https://doi.org/10.1271/bbb.67.2132
  10. Cho, S. J., Park, S. R., Kim, M. K., Lim, W. J., Ryu, S. K., An, C. L., Hong, S. Y., Lee, Y. H., Jeong, S. G., Cho, Y. U. and Yun, H. D. 2002. Endophytic Bacillus sp. isolated from the interior of balloon flower root. Biosci. Biotechnol. Biochem. 66:1270-1275. https://doi.org/10.1271/bbb.66.1270
  11. Couch, H. and Smith, B. D. 1991. Synergistic and antagonistic interactions of fungicides against Pythium aphanidermatum on perennial ryegrass. Crop Protect. 10:386-390. https://doi.org/10.1016/S0261-2194(06)80029-3
  12. Cromey, M. G., Butler, R. C., Mace, M. A. and Cole, A. L. J. 2004. Effects of the fungicides azoxystrobin and tebuconazole on Didymella exitalis, leaf senescence and grain yield in wheat. Crop Protect. 23:1019-1030. https://doi.org/10.1016/j.cropro.2004.03.002
  13. Csinos, A. S. and Stephenson, M. G. 1999. Evaluation of fungicides and tobacco cultivars resistance to Rhizoctonia solani incited target spot, damping off and sore shin. Crop Protect. 18:373-377. https://doi.org/10.1016/S0261-2194(99)00037-X
  14. Gisi, U. 1996. Synergistic interaction of fungicides in mixtures. Phytopathology 86:1273-1279.
  15. Gisi, U., Binder, H. and Rimbach, E. 1985. Synergistic interactions of fungicides with different modes of action. Trans. Br. Mycol. Soc. 85:299-306. https://doi.org/10.1016/S0007-1536(85)80192-3
  16. Grichar, W. J., Besler, B. A. and Jaks, A. J. 2000. Use of azoxystrobin for disease control in Texas peanut. Peanut Sci. 27:83-87. https://doi.org/10.3146/i0095-3679-27-2-9
  17. Howell, C. R., Hanson, L. E., Stipanovic, R. D. and Puckhaber, L. S. 2000. Induction of terpenoid synthesis in cotton roots and control of Rhizoctonia solani by seed treatment with Trichoderma virens. Phytopathology 90:248-252. https://doi.org/10.1094/PHYTO.2000.90.3.248
  18. Ishii, H., Fraaije, B. A., Sugiyama, T., Noguchi, K., Nishimura, K., Takeda, T., Amano, T. and Hollomon, D. W. 2001. Occurrence and molecular characterization of strobilurin resistance in cucumber powdery mildew and down mildew. Phytopathology 91:1166-1171. https://doi.org/10.1094/PHYTO.2001.91.12.1166
  19. Jenkyn, B. J., Bateman, G. L., Gutteridge, R. J. and Edwards, S. G. 2000. Effects of foliar sprays of azoxystrobin on take-all in wheat. Ann. Appl. Biol. 137:99-106. https://doi.org/10.1111/j.1744-7348.2000.tb00041.x
  20. Jeon, Y. A., Kim, W. G., Kim, S. W. and Hong, S. B. 2010. Taxonomic position of Korean isolates of Rhizoctonia solani based on RAPD and ITS sequencing of ribosomal DNA. Plant Pathol. J. 26:83-89. https://doi.org/10.5423/PPJ.2010.26.1.083
  21. Kim, B. S., Seo, Y. S., Jang, K. S. and Cho, K. Y. 1997. Susceptibility of selected tomato cultivars to infection by Stemphylium lycopersici and screening of effective fungicides. Kor. J. Plant Pathol. 13:257-261.
  22. Kim, J. C., Choi, G. J., Lee, S. W., Kim, J. S., Chung, K. Y. and Cho, K. Y. 2004. Screening extracts of Achyranthes japonica and Rumex cripus for activity against various plant pathogenic fungi and control of powdery mildew. Pest Manag. Sci. 60:803-808. https://doi.org/10.1002/ps.811
  23. Kim, J. Y., Hwang, Y. P., Kim, D. H., Han, E. H., Chung, Y. C., Roh, S. H. and Jeong, H. G. 2006. Inhibitory effect of the saponins derived from roots of Platycodon grandiflorum on carrageenan-induced inflammation. Biosci. Biotechnol. Biochem. 70:858-864. https://doi.org/10.1271/bbb.70.858
  24. Kim, W. K., Cho, W. D. and Lee, Y. H. 1992. Anastomosis groups and pathogenicity of Rhizoctonia solani isolates. Kor. J. Plant Pathol. 8:159-163.
  25. Kondoh, M., Jirai, M. and Shoda, M. 2001. Integrated biological and chemical control of damping-off caused by Rhizoctonia solani using Bacillus subtilis RB14-C and flutolanil. J. Biosci. Bioeng. 91:173-177. https://doi.org/10.1016/S1389-1723(01)80061-X
  26. Korean Society of Plant Pathology. 2009. List of Plant Diseases in Korea. 5th
  27. Mueller, D. S., Dorrance, A. E., Derksen, R. C., Ozkan, E., Kurle, J. E., Grau, C. R., Gaska, J. M., Hartman, G. L., Bradley, C. A. and Pedersen, W. L. 2002. Efficacy of fungicides on Sclerotinia sclerotiorum and their potential for control of Sclerotinia stem rot on soybean. Plant Dis. 86:26-31. https://doi.org/10.1094/PDIS.2002.86.1.26
  28. Park, S. H., Bae, D. W., Lee, J. T., Chung, S. O. and Kim, H. K. 1999. Integration of biological and chemical methods for the control of pepper gray mold rot under commercial greenhouse conditions. Plant Pathol. J. 15:162-167.
  29. Reuveni, M., Sheglov, D., Sheglove, N., Ben-Arie, R. and Prusky, D. 2002. Sensitivity of Red Delicious apple fruit at various phenologic stages to infection by Alternaria alternata and moldy-core control. Eur. J. Plant Pathol. 108:421-427. https://doi.org/10.1023/A:1016063626633
  30. Robson, G. D., Kuhn, P. J. and Trinci, A. P. J. 1988. Effects of validamycin A on the morphology, growth and sporulation of Rhizoctonia cerealis, Fusarium culmorum and other fungi. J. Gen. Microbiol. 134:3187-3194.
  31. Rosenweig, M., Olaya, G., Atallah, Z. K., Cleere, S., Stanger, S. and Stevenson, W. R. 2008. Monitoring and tracking changes in sensitivity to azoxystrobin fungicide in Alternaria solani in Wisconsin. Plant Dis. 92:555-560. https://doi.org/10.1094/PDIS-92-4-0555
  32. Ryu, J. S., Lee, S. D., Lee, Y. H., Lee, S. T., Kim, D. K., Cho, S. J., Park, S. R., Bae, D. W. and Yun, H. D. 2000. Screening and identification of an antifungal Pseudomonas sp. that suppresses balloon flower root rot caused by Rhizoctonia solani. J. Microbiol. Biotechnol. 10:435-440.
  33. Samoucha, Y. and Cohen, Y. 1988. Synergism in fungicide mixtures against Pseudoperonospora cubensis. Phytoparasitia 16: 337-342. https://doi.org/10.1007/BF02979509
  34. Sundravadana, S., Alice, D., Kuttalam, S. and Samiyappan, R. 2007. Efficacy of azoxystrobin on Colletotrichum gloeosporioides Penz. growth and on controlling mango anthracnose. J. Agricul. Biol. 2:10-15.
  35. Tobutt, K. R., Clarke, J. B., Biškoviæ, G., De La Rosa, R. and Biškoviæ, R. I. 2009. A gene for susceptibility to the fungicide azoxystrobin in apple and a tightly linked microsatellite marker. Plant Breed. 128:312-316. https://doi.org/10.1111/j.1439-0523.2008.01599.x
  36. Van Beneden, S., Leenknegt, I., França, S. C. and Höfte, M. 2010. Improved control of lettuce drop caused by Sclerotinia sclerotiorum using Contans combined with lignin or a reduced fungicide application. Crop Protect. 29:168-174. https://doi.org/10.1016/j.cropro.2009.08.003
  37. Vinale, F., Flematti, G., Sivasithamparam, K., Lorito, M., Marra, R., Skelton, B. W. and Chisalberti, E. L. 2009. Harzianic acid, an antifungal and plant growth promoting metabolite from Trichoderma harzianum. J. Nat. Prod. 72:2032-2035. https://doi.org/10.1021/np900548p
  38. Xue, A. G. 2003. Biological control of pathogens causing root rot complex in field pea using Clonostachys rosea strain ACM941. Phytopathology 93:329-335. https://doi.org/10.1094/PHYTO.2003.93.3.329
  39. Yi, W., Law, S. E. and Wetzstein, H. Y. 2003. Fungicide sprays can injure the stigmatic surface during receptivity in almond flowers. Ann. Bot. 91:335-341. https://doi.org/10.1093/aob/mcg019
  40. Zhang, J. X. and Xue, A. G. 2010. Biocontrol of sclerotinia stem rot (Sclerotinia sclerotiorum) of soybean using novel Bacillus subtilis strain SB24 under control conditions. Plant Pathol. 59:382-391. https://doi.org/10.1111/j.1365-3059.2009.02227.x

피인용 문헌

  1. Involvement of alternative oxidase in the regulation of sensitivity of Sclerotinia sclerotiorum to the fungicides azoxystrobin and procymidone vol.51, pp.3, 2013, https://doi.org/10.1007/s12275-013-2534-x
  2. pp.0191-2917, 2018, https://doi.org/10.1094/PDIS-05-18-0763-RE