DOI QR코드

DOI QR Code

LMI-Based Robust Controllers for DC-DC Cascade Boost Converters

  • Torres-Pinzon, Carlos Andres (Departament d'Enginyeria Electronica, Electrica, i Automatica, Escola Tecnica Superior d'Enginyeria, Universitat Rovira i Virgili) ;
  • Giral, Roberto (Departament d'Enginyeria Electronica, Electrica, i Automatica, Escola Tecnica Superior d'Enginyeria, Universitat Rovira i Virgili) ;
  • Leyva, Ramon (Departament d'Enginyeria Electronica, Electrica, i Automatica, Escola Tecnica Superior d'Enginyeria, Universitat Rovira i Virgili)
  • Received : 2011.08.03
  • Published : 2012.07.20

Abstract

This paper presents two different robust controllers for boost converters with two stages in a cascade. The first robust controller is monovariable; that is, the duty-cycle is the same for the two switches. The monovariable controller ensures that some prescribed constraints on pole placement and control effort are met, and optimizes the load disturbance rejection, while takes into account the uncertainty in certain parameters. The first controller is then compared with a multivariable robust controller; that is, with independent duty cycles in each switch. The multivariable controller takes into account the same uncertainty, constraints and optimization function. The comparison shows that the multivariable controller performs better at the expense of a slightly more complex implementation; that is, the multivariable controller provides a better rejection of the load disturbance. The paper also describes simulations and experimental results that are in perfect agreement with theoretical derivations.

Keywords

References

  1. D. Maksimovic and S. Cuk, "Switching converters with wide DC conversion range," IEEE Trans. Power Electron., Vol. 6, No. 1, pp. 151-157, Jan. 1991. https://doi.org/10.1109/63.65013
  2. J. A. Morales-Saldaña, J. Leyva-Ramos, E. E. Carbajal-Gutierrez, and M. G. Ortiz-Lopez, "Average current-mode control scheme for a quadratic buck converter with a single switch," IEEE Trans. Power Electron., Vol. 23, No. 1, pp. 485-490, Jan. 2008. https://doi.org/10.1109/TPEL.2007.910907
  3. G. R. Walker and P. C. Sernia, "Cascaded DC-DC converter connection of photovoltaic modules," IEEE Trans. Power Electron., Vol. 19, No. 4, pp. 1130-1139, Jul. 2004. https://doi.org/10.1109/TPEL.2004.830090
  4. S. Boyd, L. E. Ghaoul, E. Feron, and V. Balakrishnan, "Linear Matrix Inequalities in Systems and Control Theory," Vol. 15 of Studies in Applied and Numerical Mathematics, SIAM, Philadelphia, 1994.
  5. R. Middlebrook and S. Cuk, "A general unified approach to modeling switching-converter power stages," in Rec. IEEE Power Electronics Specialists Conference, pp. 18-34, Cleveland, Jun. 1976.
  6. C. Olalla, R. Leyva, A. El Aroudi, and I. Queinnec, "Robust LQR control for PWM converters: An LMI approach," IEEE Trans. Ind. Electron., Vol. 56, No. 7, pp. 2548-2558, Jul. 2009. https://doi.org/10.1109/TIE.2009.2017556
  7. C. Olalla, R. Leyva, A. El Aroudi, P. Garces, and I. Queinnec, "LMI robust control design for boost PWM converters," IET Power Electronics, Vol. 3, No. 1, pp. 75-85, Jan. 2010. https://doi.org/10.1049/iet-pel.2008.0271
  8. J. A. Morales-Saldana, R. Galarza-Quirino, J. Leyva-Ramos, E. E. Carbajal-Gutierrez, and M. G. Ortiz-Lopez, "Multiloop controller design for a quadratic boost converter," IET Electric Power Applications, Vol. 1, No. 3, pp. 362-367, May 2007. https://doi.org/10.1049/iet-epa:20060426
  9. R. W. Erickson and D. Maksimovic, Fundamental of Power Electronics, 2nd Ed., Kluwer Academic Publisher, Norwell, Massachusetts, 2001
  10. A. Rios-Bolivar and G. Garcia, "A robust filters for fault detection and diagnosis: An $H{\infty}$ optimization approach," in Proceeding of European Control Conference, pp. 132-137, Porto, Sep. 2001.
  11. M. Chilali and P. Gahinet, "$H{\infty}$ Placement Constraints: An LMI Approach," IEEE Transactions on Autom. Control, Vol. 41, No. 3, pp. 358-367, Mar. 1996. https://doi.org/10.1109/9.486637
  12. P. Gahinet, LMI Control Toolbox for Use with Matlab, Natick, MA: The Mathworks, Inc., 1995
  13. J.-P. Lee, B.-D. Min, T.-J. Kim, D.-W. Yoo, and J.-Y. Yoo, "Input-series-output-parallel connected DC/DC converter for a photovoltaic PCS with high efficiency under a wide load range," Journal of Power Electronics, Vol. 10, No. 1, pp. 9-13, Jan. 2010. https://doi.org/10.6113/JPE.2010.10.1.009
  14. M.-G. Kim and Y.-S. Jung, "A novel soft-switching two-switch flyback converter with a wide operating range and regenerative clamping," Journal of Power Electronics, Vol. 9, No. 5, pp. 772-780, Sep. 2009.
  15. R. D, Middlebrook, "Transformerless DC-to-DC converters with large conversion ratios," IEEE Trans. Power Electron., Vol. 3, No. 4, pp. 484-488, Oct. 1988. https://doi.org/10.1109/63.17970
  16. H.-L. Do, "Zero-voltage-switching boost converter using a coupled inductor," Journal of Power Electronics, Vol. 11, No. 1, pp. 16-20, Jan. 2011. https://doi.org/10.6113/JPE.2011.11.1.016
  17. V. F. Montagner, R. C. L. F. Oliveira, V. J. S. Leite, and P. L. D. Peres, "LMI approach for $H{\infty}$ linear parameter-varying state feedback control," IEE Proceedings - Control Theory and Applications, Vol. 152, No. 2, pp. 195- 201, Mar. 2005. https://doi.org/10.1049/ip-cta:20045117
  18. R. Leyva, C. Olalla, I. Queinnec, S. Tarbouriech, C. Alonso, and L. Martinez-Salamero, "Passivity‐based control for large‐signal stability of high‐order switching converters," Asian Journal of Control, Vol. 14, No. 2, pp. 1934-6093, Mar. 2012