DOI QR코드

DOI QR Code

플라스틱 기판상에 제작된 PCBM 박막 트랜지스터의 전기적 특성에 대한 유기 용매 최적화의 효과에 대한 연구

Effect of Organic Solvent-Modification on the Electrical Characteristics of the PCBM Thin-Film Transistors on Plastic substrate

  • 형건우 (홍익대학교 신소재공학과) ;
  • 이호원 (홍익대학교 정보디스레이공학과) ;
  • 구자룡 (홍익대학교 정보디스레이공학과) ;
  • 이석재 (홍익대학교 정보디스레이공학과) ;
  • 김영관 (홍익대학교 정보디스레이공학과)
  • 투고 : 2012.03.27
  • 심사 : 2012.06.18
  • 발행 : 2012.06.30

초록

유기 박막 트랜지스터 (organic thin-film transistors; OTFTs)는 유기 반도체 그리고 디스플레이와 같은 분야에 그들의 잠재적인 응용 가능성 때문에 많은 주목을 받고 있다. 하지만 급격한 산화 혹은 낮은 전기 이동도와 같은 단점으로 인하여 n-형 물질은 p-형 물질에 비해서 상대적으로 많은 연구가 진행되지 못한 실정이다. 따라서 본 논문에서는 n-형 반도체 물질인 [6,6]-phenyl-C61-butyricacidmethylester (PCBM)과 Poly(4-vinylphenol) (PVP)을 유기 절연막으로 이용하여 o-dichlorobenzene, toluene and chloroform과 같은 다양한 유기 용매를 사용한 플라스틱 기판에 유기트랜지스터를 제작하였고 유기 용매가 ODCB 경우 전계 효과 이동도는 약 0.034 $cm^2/Vs$ 그리고 점멸비(on/off ratio)는 ${\sim}1.3{\times}10^5$ 으로 향상 되었다. 다양한 유기 용매의 휘발성에 따라서 PCBM TFT의 전기적 특성에 미치는 영향을 규명하였다.

Organic thin-film transistors (OTFTs) have received considerable attention because their potential applications for nano-scale thin-film structures have been widely researched for large-scale integration industries, such as semiconductors and displays. However, research in developing n-type materials and devices has been relatively shortage than developing p-type materials. Therefore, we report on the fabrication of top-contact [6,6]-phenyl-C61-butyricacidmethylester (PCBM) TFTs by using three different solvent, o-dichlorobenzene, toluene and chloroform. An appropriate choice of solvent shows that the electrical characteristics of PCBM TFTs can be improved. Moreover, our PCBM TFTs with the cross-linked Poly(4-vinylphenol) dielectric layer exhibits the most pronounced improvements in terms of the field-effect mobility (${\sim}0.034cm^2/Vs$) and the on/off current ratio (${\sim}1.3{\times}10^5$) for our results. From these results, it can be concluded that solvent-modification of an organic semiconductor in PCBM TFTs is useful and can be extended to further investigations on the PCBM TFTs having polymeric gate dielectrics. It is expected that process optimizations using solution-processing of organic semiconductor materials will allow the development of the n-type organic TFTs for low-cost electronics and various electronic applications.

키워드

참고문헌

  1. A. Dodabalapur, Z. Bao, and A. Makhija, "Organic Smart Pixels", Appl. Phys. Lett., 73, 142 (1998). https://doi.org/10.1063/1.121736
  2. Y. Y. Lin, D. J. Gundlach, S. F. Nelson, and T. N. Jackson, "Pentacene-based Organic Thin-film Transistors", IEEE Trans. Electron Devices, 44, 1325 (1997). https://doi.org/10.1109/16.605476
  3. D. J. Gundlach, C. C. Kuo, and T. N. Jackson, "Organic Thin Film Transistors with Field Effect Mobility", 57th Annual Device Research Conference Digest, 164 (1999).
  4. S. Hoshino, M. Yoshida, S. Uemura, T. Kodzasa, N. Takada, T. Kamata, and K. Yase, "Influence of Moisture on Device Characteristics of Polythiophene-based Field-effect Transistors", J. Appl. Phys., 95, 5088 (2004). https://doi.org/10.1063/1.1691190
  5. V. Liberman, V. Malba, and A. F. Bernhardt, "Integration of Vapor Deposited Polyimide into a Multichip Module Packaging Process", IEEE Trans. On Components, Packing, and Manufacturing. Technology. Part B, 20, 13 (1997).
  6. M. Halik, H. Klauk, M. Brunnbauer, and F. Stellacci, "Low-voltage Organic Transistors with an Amorphous Molecular Gate Dielectric", Nature, 431, 963 (2004). https://doi.org/10.1038/nature02987
  7. T. Jung, A. Dodabalapur, R. Wenz, and S. Mohapatra, "Moisture Induced Surface Polarization in a Poly(4-vinyl phenol) Dielectric in an Organic Thin-film Transistor," Appl. Phys. Lett., 87, 182 (2005).
  8. H. Yanagisita, D. Kitamoto, K. Haraya, T. Nakane, T. Tsuchiya, and N. Koura, "Preparation and Pervaporation Performance of Polyimide Composite Membrane by Vapor Deposition and Polymerization (VDP)", J. Membrane Science, 136, 121 (1997). https://doi.org/10.1016/S0376-7388(97)00163-4
  9. C. A. Pryde, "IR Studies of Polyimide. І. Effects of Chemical and Physical Changes During Cure", J . Polym. Sci. A., 27, 711 (1989). https://doi.org/10.1002/pola.1989.080270229
  10. M. L. Chabinyc and A. Salleo "Materials Requirements and Fabrication of Active Matrix Array of Organic Thin-Film Transistors for Dispalys", Chem. Mater. 16, 4509 (2004). https://doi.org/10.1021/cm049647z
  11. S. W. Pyo, D. H. Lee, J. R. Koo, J. H. Kim, J. H. Shim, and Y. K. Kim, "Organic Thin-Film Transistors Based on Vapor-Deposition Polymerized Gate Insulators", Jpn. J. Appl. Phys., 44, 652 (2005). https://doi.org/10.1143/JJAP.44.652
  12. M. Yoshida, S. Uemura, T. Kodzasa, T. Kamata, M. Matsuzawa, and T. Kawai, "Surface Potential Control of an Insulator Layer for the High Performance Organic FET", Synth. Met. 137, 967 (2003). https://doi.org/10.1016/S0379-6779(02)00958-X
  13. S. Y. Yang, K. w. Shin, and C. E. Park, "The Effect of Gate Dielectric Surface Energy on Pentacene Morphology and OFET Characteristics", Adv. Funct. Mater. 15, 1806 (2005) https://doi.org/10.1002/adfm.200400486
  14. S. H. Han, J. H. Kim, Y. R. Son, K. J. Lee, W. S. Kim, G. S. Cho, J. Jang, S. H. Lee, and D. J. Choo, "Solvent Effect of the Passivation Layer on Performance of an Organic Thin-film Transistor", Electrochem. Solid State Lett., 10, J68 (2007). https://doi.org/10.1149/1.2712790
  15. J. H. Lee, S. H. Kim, J. B. Koo, J. W. Lim, S. C. Lim, G. H. Kim, S. J. Yun, K. S. Suh, C. H. Ku, and J. Jang, "Isolation Effect on Organic Thin Film Transistors for Low Hysteresis Characteristics," J . Korean Phys.Soc., 49, 1148 (2006).