DOI QR코드

DOI QR Code

동일배열 폴리프로필렌/엘라스토머/나노충전제 복합체의 전력케이블 절연체로서의 사용 가능성에 대한 문헌적 고찰

A Review on IPP/Elastomer/Nanofiller Composites for the Possibility of Use as Power Cable Insulations

  • 변선호 (한국과학기술정보연구원)
  • Pyun, Sun-Ho (Korea Institute of Science and Technology Information(KISTI))
  • 투고 : 2012.03.27
  • 심사 : 2012.06.06
  • 발행 : 2012.06.30

초록

본 논문은 절연유 불포함 재활용 가능 전력케이블 절연체에 동일배열 폴리프로필렌(IPP) 기반 열가소성 폴리올레핀 엘라스토머(TPO) 나노복합체 사용 가능성을 문헌적으로 고찰한 리뷰논문이다. 2010년 IPP 기반 나노복합 유전체는 파워 커패시터 연구에서 유전손실을 제외한 고전압 특성이 크게 향상되었다. IPP 기반 TPO 나노복합체 사용 자동차 외장부품 연구에서는 나노충전제 최대 3 wt% 함유로 전력케이블 절연체의 필수특성인 저온 충격성을 비롯한 기계적 특성향상이 보고 되었다. 특히 유전손실의 원천인 상용화제 사용의 최소화 기술이 보고되어, 3 wt% 이하 나노충전제 함유 IPP 기반 TPO의 전기적 특성조사가 필요하다.

For use as recyclable power cable insulations without dielectric oil, technology trends of IPP based thermoplastic polyolefin elastomer(TPO) nanocomposites were reviewed. In 2010 research results of IPP nanocomposite dielectrics for power capacitors showed promising high voltage properties except dielectric loss. Research of IPP based TPO nanocomposites for automotive exterior parts revealed considerable improvements of mechanical properties including impact strength, especially minimization of compatibilizer content, the origin of dielectric loss. A study on electrical properties of IPP based TPO nanocomposites containing a few weight percent of nanofillers for power cable insulations is suggested.

키워드

참고문헌

  1. T. Takahashi and H. Miyata, Development of the New Polymer Insulating Materials for HVDC Cable", IEEE Transactions on Power Delivery, 7, 1053 (1992). https://doi.org/10.1109/61.141811
  2. S. Belli and G. Perego, P-Laser: Break-through in Power Cable Systems, ISEI , 1 (2010).
  3. S. Li, Short-term Breakdown and Long-term Failure in Nanodielectrics: A Review, IEEE TDEI , 17, 1523 (2010).
  4. T. Tanaka, M. Kozako, N. Fuse, and Y. Ohki, Proposal of a Multi-core Model for Polymer Nanocomposite Dielectrics, IEEE TDEI , 12, 669 (2005).
  5. Y. Murata and M. Kanaoka, Develop -ment History of HVDC Extruded Cable with Nanocomposite Material, 8th International Conference on Properties and Applications of Dielectric Materials, 460 (2006).
  6. Borealis AG, Polyethylene LE4253, Crosslinkable Insulation Compound (for solid dielectric HVDC cables). K. Johannesson and A. Gustafsson, HVDC Light Cables for Long Distance Grid Connection, European Offshore Wind Conference, 1 (2009).
  7. M. Roy, J.K. Nelson and C. W. Reed, Polymer Nanocomposite Dielectrics- The role of the Interface, IEEE TDEI , 12, 1273 (2005).
  8. M. Garcia and W. E. Van Zyl, Novel Preparation of Hybrid Polypropylene /Silica Nanocomposites in a Slurry -phase Polymerisation Reactor, Ind. Eng. Chem. Res., 42, 3750 (2003). https://doi.org/10.1021/ie020914p
  9. M. Takala, Dielectric Properties and Partial Discharge Endurance of PP-Silica Nanocomposite, IEEE TDEI , 17, 1259 (2010).
  10. Y. Liu and M. Kontopoulou, The Structure and Physical Properties of Polypropylene and Thermoplastic Olefin Nanocomposites Containing Nanosilica, Polymer, 47, 7731 (2006). https://doi.org/10.1016/j.polymer.2006.09.014
  11. T. Sun and J. M. Garces, High- Performance Polypropylene-Clay Nanocomposites by In-situ Polymerization with Metallocene/Clay Catalysts, Adv. Mater. , 14, 128 (2002). https://doi.org/10.1002/1521-4095(20020116)14:2<128::AID-ADMA128>3.0.CO;2-7
  12. E. C. Lee, D. F. Milewski, and R. J. Baird, Exfoliation and Dispersion Enhancement in Polypropylene Nanocomposites by In-Situ Melt Phase Ultrasonication, Poly. Eng. Sci., 44, 1773 (2004). https://doi.org/10.1002/pen.20179
  13. A. I. Isayev, Rishi Kumar, and Todd M. Lewis, Ultrasound Assisted Twin-screw Extrusion of Polymer- Nanocomposites Containing Carbon Nanotubes, Polymer, 50, 250 (2009). https://doi.org/10.1016/j.polymer.2008.10.052
  14. S. S. Bamji, M. Abou-Dakka, A. T. Bulinski, L. Ultracki, and K. Cole, Dielectric Properties of Polypropylene Containing Nano-Particles, Annual Report CEIDP , 166 (2005).
  15. H. Baniasadi, Investigation of In Situ Prepared Polypropylene/clay Nanocomposites Properties and Comparing to Melt Blending Method, Materials and Design, 31, 76 (2010). https://doi.org/10.1016/j.matdes.2009.07.014
  16. T. Tanaka and N. Fuse, Comparison of nano-structurisation Effects in Polypropylene among Four Typical Dielectric Properties, IEEE TDEI , 17, 671 (2010).
  17. Hyuk-soo Lee, P. D. Fasulo and D. R. Pau, Thermoplastic Olefin Elastomer Based Nanocomposites, Part 1. Morphology and Mechanical Properties, Polymer, 46, 11673 (2005). https://doi.org/10.1016/j.polymer.2005.09.068
  18. A. Hassan and J. W. Lim, Rubbertoughened Polypropylene Nanocomposite : Effect of Polyethylene Octene Copolymer on Mechanical Properties and Phase Morphology, JAPS, 99, 3441 (2006).
  19. Feng-hua Su and Y. Zho, Microstructure and Mechanical Properties of PP/POE/Clay Ternary Nano Composites Prepared by Melt Blending Using Supercritical Carbon Dioxide as a Processing Aid, Composite Part B: Engineering, 42, 421 (2011). https://doi.org/10.1016/j.compositesb.2010.12.005
  20. Borealis Technology OY, Cable Layer on Polypropylene Basis with High Electrical Breakdown Strength, WO20080006531.
  21. Borealis AG, Alpha-nucleated Polypropylene for Power Cable Insulation, WO20100076242.