DOI QR코드

DOI QR Code

Heavy Metal Adsorpton on AsO4-Substituted Schwertmannite

AsO4로 치환된 슈베르트마나이트의 중금속 흡착 특성

  • 김병기 (경북대학교 자연과학대학 지질학과) ;
  • 김영규 (경북대학교 자연과학대학 지질학과)
  • Received : 2012.05.29
  • Accepted : 2012.06.18
  • Published : 2012.06.30

Abstract

The $AsO_4$ ion in acid mine drainage has been known to substitute for $SO_4$ in schwertmannite and prevent schwertmannite from being converted to goethite. There have been studies on the heavy metal sorption on schwertmannite, but no experimental results have been reported on the characteristics of heavy metal sorption on $AsO_4$-substituted schwertmannite. In this study, we conducted sorption experiments of Cu, Pb, and Zn on the $AsO_4$-substituted schwertmannite at pH 4 and 6 in the solution of 3, 10, 30, and 100 mg/L concentrations. For all heavy metals, the sorbed heavy metals significantly increase at pH 6 compared with at pH 4. At both pH 4 and 6, Pb shows the highest sorption capacity and those of Cu and Zn are similar. With increasing time, the sorbed heavy meal contents increase too. However, in the case of Zn, the most sorptions occur at the initial stage and no significant increase is observed with time. Among the concentration ranges in which we conducted the experiment, the increasing trend is clear in high concentrated solutions such as 100 mg/L. We applied several sorption kinetic model and it shows that the diffusion process may be the most important factor controlling the sorption kinetics of Cu, Pb, and Zn on $AsO_4$-substituted schwertmannite. Considering the previous results that pure schwertmannite has similar sorption capacity for all three heavy metals at pH 6 and has higher sorption capacity for Cu and Pb than Zn at pH 4, our experiments indicates that substitution of $AsO_4$ for $SO_4$ on schwertmannite changes surface and sorption characteristics of schwertmannite. It also shows that $AsO_4$ contributes not only to the stability of schwertmannite, but also to the mobility of heavy metals in acid mine drainage.

산성광산배수에 존재하는 $AsO_4$는 슈베르트마나이트의 $SO_4$를 치환하여 강하게 흡착되고 이로 인하여 슈베르트마나이트가 쉽게 침철석으로 전이되지 않게 해준다. 이러한 슈베르트마나이트에 대하여 주요 중금속 흡착에 대한 연구는 일부 이루어져 있으나 실제 $AsO_4$로 치환된 슈베르트마나이트에 대한 흡착 특성에 대해서는 기존에 연구된 바가 없다. 본 연구에서는 $AsO_4$로 치환된 슈베르트마나이트에 대하여 Cu, Pb, Zn 등의 대표적인 중금속 세 종류에 대하여 각 중금속의 농도가 3, 10, 30, 100 mg/L에 대하여 pH 4와 6의 두 범위에서 시간에 따른 흡착 실험을 실시하였다. 흡착 실험 결과 모든 중금속에 대하여 pH 6인 경우 pH 4에 비하여 흡착량이 큰 범위로 증가하였다. 전체적인 흡착량에 있어서 두 pH 범위에서 모두 Pb가 가장 큰 흡착량은 보였으며 Cu와 Zn의 흡착량은 비슷하였다. 시간에 따른 흡착속도는 전체적으로 모든 농도에 대하여 시간이 증가하면서 흡착량은 증가하였으나 Zn의 경우 대부분의 흡착이 초기에 일어나 시간이 지나면서 뚜렷한 흡착의 증가는 일어나지 않았다. 이러한 흡착량 증가는 특히 고농도의 용액인 100 mg/L에서 그 증가하는 양상이 뚜렷하였다. 다양한 흡착속도 모델을 적용한 결과 $AsO_4$로 치환된 슈베르트마나이트에서 일어나는 중금속의 흡착속도는 아마도 확산에 의하여 주로 좌우되는 것으로 나타났다. 기존의 연구에서 순수한 슈베르트마나이트가 pH 6에서 세 중금속에 대하여 거의 비슷한 흡착량을 보이고 pH 4에서는 Cu와 Pb가 비슷하게 Zn보다 높은 흡착량을 보이는 것을 고려하면 본 연구 결과 $AsO_4$ 슈베르트마나이트는 확연하게 다른 흡착 경향을 보이고 이는 $AsO_4$가 슈베르트마나이트의 $SO_4$를 치환됨으로 인하여 슈베르트마나이트의 표면 및 흡착특성이 달라짐을 지시한다. 이는 산성광산배수에서 $AsO_4$의 흡착이 슈베르트마나이트의 안정성뿐만 아니라 각 중금속의 거동에도 큰 영향을 줄 수 있음을 보여준다.

Keywords

References

  1. 금교진, 정은하, 김영규 (2010) 슈베르트마나이트의 $AsO_{4}$, $SeO_{3}$, $CrO_{4}$ 흡착 및 열적 특성. 한국광물학회지, 23, 117-124.
  2. 이지은, 김영규, 추창오 (2003) 달성 폐광산의 침출수 및 갱내유출수의 수리지구화학적 특성과 비교. 한국지질학회지, 39, 519-533.
  3. 정기영, 김강주 (2010) 금산군 마전리층 열수 광화대의 표성 함비소 슈베르트마나이트. 한국광물학회지, 23, 93-98.
  4. Bhattacharyya, K.G. and Gupta, S.S. (2008) Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review. Adv. Colloid Interface Sci., 140, 114-131. https://doi.org/10.1016/j.cis.2007.12.008
  5. Bigham, J.M. and Nordstrom, D.K. (2000) Iron and aluminum hydroxysulfates from acid sulfate waters. In: Alpers, C.N., Jambor, J.L., and Nordstrom, D.K. (eds.), Sulfate Minerals. Crystallography, Geochemistry and Environmental Significance, Reviews in Mineralogy and Geochemistry, Vol. 40, Mineral. Soc. America, 351-403.
  6. Bigham, J.M., Schwertmann, U., Carlson, L., and Murad, E. (1990) A poorly crystallized oxyhydroxysulfate of iron formed by bacterial oxidation of Fe(II) in acid mine waters. Geochim. Cosmochim. Acta, 54, 2743-2758. https://doi.org/10.1016/0016-7037(90)90009-A
  7. Bigham, J.M., Carlson, L., and Murad, E. (1994) schwertmannite, a new iron oxyhydroxysulfate from Pyhasalmi, Finland, and other localities. Mineral. Mag., 393, 641-648.
  8. Bigham, J.M., Schwertmann, U., and Pfab, G. (1996a) Influence of pH on mineral speciation in a bioreactor simulating acid mine drainage. Appl. Geochem., 11, 845-849. https://doi.org/10.1016/S0883-2927(96)00052-2
  9. Bigham, J.M., Schwertmann, U., Tranina, S.J., Winland, R.L., and Wolf, M. (1996b) schwertmannite and the chemical modeling of iron in acid sulfate waters. Geochim. Cosmochim. Acta, 60, 2111-2121. https://doi.org/10.1016/0016-7037(96)00091-9
  10. Carlson L., Bigham J.M., Schwertmann U., Kyek A., and Wagner, F. (2002) Scavenging of As from acid mine drainage by schwertmannite and ferrihydrite: A comparison with synthetic analogues. Environ. Sci. Technol., 36, 1712-1719. https://doi.org/10.1021/es0110271
  11. Childs, C.W., Inoue, K., and Mizota C. (1998) Natural and anthropogenic schwertmannites from Towada-Hachimantai National Park, Honshu, Japan. Chem. Geol., 144, 81-86. https://doi.org/10.1016/S0009-2541(97)00121-6
  12. Davis, J.A. and Kent, D.B. (1990) Surface complexation modeling in aqueous geochemistry. In: Hochella, M.F. and White, A.F. (eds.), Mineral-Water Interface Geochemistry, Reviews in Mineralogy, Vol. 23, Mineral. Soc. America, 177-260.
  13. Dinelli, E. and Tateo, F. (2002) Different types of fine-grained sediments associated with acid mine drainage in the Libiola Fe-Cu mine area (Ligurian Apennines, Italy). Appl. Geochem., 17, 1081-1092. https://doi.org/10.1016/S0883-2927(02)00009-4
  14. Dold, B. and Fontbote, L. (2001) Element cycling and secondary mineralogy in porphyry copper tailings as a function of climate, primary mineralogy, and mineral processing. J. Geochem. Explor., 74, 3-55. https://doi.org/10.1016/S0375-6742(01)00174-1
  15. Fukushi, K., Sasaki, M., Sato, T., Yanase, N., Amano, H., and Ikeda H. (2003a) A natural attenuation of arsenic drainage from an abandoned arsenic mine dump. Appl. Geochem. 18, 1267-1278. https://doi.org/10.1016/S0883-2927(03)00011-8
  16. Fukushi, K., Sato, T., Yanase, N. (2003b) Soild-solution reactions in As(V) sorption by schwertmannite. Environ. Sci. Technol., 37, 3581-3586. https://doi.org/10.1021/es026427i
  17. Fukushi, K., Sato, T., Yanase, N., Minato, J., and Yamada, H. (2004) Arsenate sorption on schwertmannite. Am. Miner., 89, 1728-1734.
  18. Hudson-Edwards, K.A., Schell, C., and Macklin, M.G. (1999) Mineralogy and geochemistry of alluvium contaminated by metal mining in the Rio Tinto area, southwest Spain. Appl. Geochem., 14, 1015-1030. https://doi.org/10.1016/S0883-2927(99)00008-6
  19. Jonsson, J. (2003) Phase transformations and surface chemistry of secondary iron minerals formed from acid mine drainage. Ph.D. Thesis, Umea university.
  20. Jonsson, J., Sjöberg, S., and Lövgren, L. (2006) Adsorption of Cu(II) to schwertmannite and goethite in presence of dissolved organic matter. Water Res., 40, 969-974. https://doi.org/10.1016/j.watres.2006.01.006
  21. Kawano, M. and Tomita, K. (2001) Geochemical modeling of bacterially induced mineralization of schwertmannite and jarosite in sulfuric acid spring water. Am. Miner., 86, 1156-1165. https://doi.org/10.2138/am-2001-1005
  22. Kim, J.J., Kim, S.J., and Tazaki, K. (2002) Mineralogical characterization of microbial ferrihydrite and schwertmannite and non-biogenic Al-sulfate precipitates from acid mine drainage in the Donghae mine area, Korea. Environ. Geol., 42, 19-31. https://doi.org/10.1007/s00254-002-0530-2
  23. Lee, G., Bigham, J.M., and Faure, G. (2002) Removal of trace metals by coprecipitation with Fe, Al and Mn from natural waters contaminated with acid mine drainage in the Ducktown Mining District, Tennessee. Appl. Geochem., 17, 569-581. https://doi.org/10.1016/S0883-2927(01)00125-1
  24. Lintnerova, O., Sucha, V., and Stresko, V. (1999) Mineralogy and geochemistry of acid mine Fe-precipitates from the main Slovak mining regions. Geol. Carpath., 50, 395-404.
  25. Loan, M. John, M., Cowley, J.M., Hart, R., and Parkinson, G.M. (2004) Evidence on the structure of synthetic schwertmannite. Am. Miner., 89, 1735-1742.
  26. Murad, E., Schwertmann, U., Bigham, J.M., and Carlson, L. (1994) Mineralogical characteristics of poorly crystallized precipitates formed by oxidation of $Fe^{2+}$ in acid sulfate waters, In: Alpers C.N. and Blowes, D.W. (eds.), Environmental geochemistry of sulfide oxidation, ACS Symposium Series Vol. Am. Chem Soc. 190-200.
  27. Parks, G.A. (1990) Surface energy and adsorption at mineral-water interfaces: An introduction. In: Hochella, M.F. Jr, White, A.F. (eds.), Mineral-water Interface Geochemistry, Reviews in Mineralogy, Vol 23, Mineral. Soc. America, 133-175.
  28. Raven, K.P., Jain, A., and Loeppert, R.H. (1998) Arsenite and arsenate adsorption on ferrihydrite: Kinetics, equilibrium, and adsorption envelopes. Environ. Sci. Technol., 32, 344-349. https://doi.org/10.1021/es970421p
  29. Regenspurg, S., Brand, A. and Peiffer, T. (2004) Formation and stability of schwertmannite in acidic mining lakes. Geochim. Cosmochim. Acta, 68, 1185-1197. https://doi.org/10.1016/j.gca.2003.07.015
  30. Rezaei, M. and S.A.R.M. Naeini (2009) Effects of ammonium and Iranian natural zeolite on potassium adsorpton and desorption kinetics in the loess soil. Int. J. Soil Sci., 4, 27-45. https://doi.org/10.3923/ijss.2009.27.45
  31. Schwertmann, U. and Cornell, R.M. (2000) Iron Oxides in the Laboratory. Preparation and Characterisation, 137 p. VCH, Weinheim.
  32. Schwertmann, U., Bigham, J.M., and Murad, E. (1995) The 1st occurrence of schwertmannite in a natural stream environment. Eur. J. of Mineral., 3, 547-552.
  33. Sparks, D.L. (2003) Environmental Soil Chemistry. (2nd Ed.) Academic Press, 352p.
  34. Webster, J.G., Swedlund P.J., and Webster K.S. (1998) Trace metal adsorption onto an acid mine drainage iron(III) oxy hydroxy sulfate. Environ. Sci. and Technol., 32, 1361-1368. https://doi.org/10.1021/es9704390
  35. Yu J.Y., Heo, B., Choi, I.K., Cho, J.P., and Chang, H.W. (1999) Apparent solubilities of schwertmannite and ferrihydrite in natural stream waters polluted by mine drainage. Geochim. Cosmochim. Acta, 63, 3407-3416. https://doi.org/10.1016/S0016-7037(99)00261-6
  36. Yu J.Y., Park M., and Kim J. (2002) Solubilities of synthetic schwertmannite and ferrihydrite. Geochem. J., 36, 119-132. https://doi.org/10.2343/geochemj.36.119
  37. Zanker H., Moll H., Richter W., Brendler V., Hennig C., Reich T., Kluge A., and Huttig G. (2002) The colloid chemistry of acid rock drainage solution from an abandoned Zn-Pb-Ag mine. Appl. Geochem., 17, 633-648. https://doi.org/10.1016/S0883-2927(01)00126-3