DOI QR코드

DOI QR Code

Numerical Simulation of Irregular Airflow within Wave Power Converter Using OWC by Action of 3-Dimensional Irregular Waves

3차원불규칙파동장하의 진동수주형 파력발전구조물에서 불규칙공기흐름의 수치시뮬레이션

  • Lee, Kwang-Ho (Industry and Academia Cooperation Foundation, Kwangdong University) ;
  • Park, Jung-Hyun (Department of Civil Engineering, Korea Maritime University) ;
  • Kim, Do-Sam (Department of Civil Engineering, Korea Maritime University)
  • Received : 2012.04.02
  • Accepted : 2012.05.29
  • Published : 2012.06.29

Abstract

An Oscillating Water Column (OWC) wave generation system uses the air flow induced by the vertical motion of water column in the air chamber as a driving force of turbine. It is well known that OWC is one of the most efficient devices to harness wave power. This study estimated the air flow velocity from the time variation of the water level fluctuation in the air chamber under regular wave conditions using 3-dimensional numerical irregular wave tank (3D-NIT) model that can simulate the 3-dimensional irregular wave field. The applicability of the 3D-NIT model was validated by comparing numerically predicted air flow velocities with hydraulic experimental results. In addition, the characteristics of air flow frequency spectrum variation due to the incident frequency spectrum change, and the variations of frequency spectrum and wave reflection due to the existence of converter inside the air chamber were discussed. It is found that the phase difference exists in between the air flow velocity and the water level fluctuation inside the air chamber, and the peak frequency of the spectrum in water level fluctuation is amplified by the resonance in the air chamber.

공기실 내에서 해수면의 상하운동을 공기흐름으로 변환하고, 이를 터빈의 구동력으로 이용하는 진동수주형(OWC; Oscillating Water Column)의 파력발전시스템은 파랑에너지흡수장치 중에 가장 효율적인 것으로 알려져 있다. 본 연구에서는 3차원불규칙파수치파동수로에 기초한 3D-NIT(3-Dimensional Numerical Irregular wave Tank)모델을 규칙파동장에 적용하여 산정된 공기실 내 수위변동의 시간변화로부터 공기흐름속도를 추정하고, 이의 결과와 수리모형실험으로부터 얻어진 공기흐름속도와를 비교하여 본 3D-NIT모델의 적용성을 검토하였다. 또한, 불규칙파동장하의 OWC파력발전구조물에서 공기실 내 공기흐름의 해석에 3D-NIT모델을 적용하여 입사주파수스펙트럼의 변화에 따른 공기흐름 주파수스펙트럼의 변화특성, 구조물의 존재여부에 따른 공기실 위치에서 주파수스펙트럼의 변화특성 및 구조물에 의한 반사율의 변화특성 등을 검토하였다. 이로부터 공기실 내에서 수위변동 및 공기흐름의 시계열 자료에서 위상차가 존재하며, 공기실 내의 공진에 의해 수위변동의 주파수스펙트럼에서 첨두치가 증폭되는 현상 등을 알 수 있었다.

Keywords

References

  1. 경조현, 홍사영, 홍도천 (2006). 진동수주형 파력발전기의 에너지 흡수효율 해석. 한국해양공학회지, 20(4), 64-69.
  2. 이광호, 박정현, 백동진, 조성, 김도삼 (2011). 진동수주형 파력 발전구조물의 최적형상에 대한 검토. 한국해안.해양공학회논문집, 23(5), 345-357.
  3. 이광호, 범성심, 김도삼, 박종배, 안성욱 (2012). 공진장치에 의한 단주기파랑의 제어에 관한 연구. 한국해안.해양공학회 논문집, 24(1), 36-47. https://doi.org/10.9765/KSCOE.2012.24.1.036
  4. 이광호, 최현석, 김창훈, 김도삼, 조성 (2011). 저반사구조물을 이용한 파력발전에 있어서 압축공기흐름 및 작용파압에 관한 수치해석. 한국해안.해양공학회 논문집, 23(2), 171-181.
  5. 이민기 (2007). CADMAS-SURF에 의한 불규칙파랑의 해석과 월파량추산에 관한 연구. 석사학위논문, 한국해양대학교.
  6. 조일형 (2002). 원통형 진동수주 파력발전구조물에 의한 파 에너지 흡수. 한국해안.해양공학회지, 14(1), 8-18.
  7. Boccotti, P. (2007a). Comparison between a U-OWC and a conventional OWC, Ocean Engineering, Vol.34, 799-805. https://doi.org/10.1016/j.oceaneng.2006.04.005
  8. Boccotti, P. (2007b). Caisson breakwaters embodying an OWC with a small opening - Part I : Theory. Ocean Engineering, Vol.34, 806-819. https://doi.org/10.1016/j.oceaneng.2006.04.006
  9. Bonke, K. and Ambli, N. (1986). Prototype wave power stations in Norway. Proceedings of International Symposium on Utilization of Ocean Waves-Wave to Energy Conversion, ASCE, 34-45.
  10. CDIT(2001) : Research and Development of Numerical Wave Channel(CADMAS-SURF), CDIT library, No.12, Japan.
  11. Delaure, Y.M.C. and Lewis, A. (2003). 3D hydrodynamic modelling of fixed oscillating water column wave power plant by a boundary element methods. Ocean Engineering, Vol.30, 309-330. https://doi.org/10.1016/S0029-8018(02)00032-X
  12. EI Marjani, A., Castro Ruiz, F., Rodriguez, M.A. and Parra Santos, M.T. (2008). Numerical modelling in wave energy conversion systems. Energy, Vol.33, 1246-1253. https://doi.org/10.1016/j.energy.2008.02.018
  13. Evans, D.V. and Porter, R. (1995). Hydrodynamic characteristics of an oscillating water column device. Applied Ocean Research, Vol.17, 155-164. https://doi.org/10.1016/0141-1187(95)00008-9
  14. Evans, D.V. and Porter, R. (1997). Efficient calculation of hydrodynamic properties of OWC-type devices. J. Offshore Mech. and Article Eng., Vol.119, 210-218. https://doi.org/10.1115/1.2829098
  15. Falcao, A.F. de O. (2000). The shoreline OWC wave power plant at the Azores. Proceedings of 4th European Wave Energy Conference, 42-47.
  16. Falcao, A.F. de O. (2002). Control of an oscillating-water-column wave power plant for maximum energy production. Applied Ocean Research, Vol.24, 73-82. https://doi.org/10.1016/S0141-1187(02)00021-4
  17. Falcao, A.F. de O. (2010). Wave energy utilization : A review of the technologies. Renewable and Sustainable Energy Reviews, Vol.14, 899-918. https://doi.org/10.1016/j.rser.2009.11.003
  18. Falcao, A.F. de O. and Justino, P.A.P. (1999). OWC wave energy devices with air flow control. Ocean Engineering, Vol.26, 1275-1295. https://doi.org/10.1016/S0029-8018(98)00075-4
  19. Falcao, A.F. de O. and Rodrigues, R.J.A. (2002). Stochastic modelling of OWC wave power plant performance. Applied Ocean Research, Vol.24, 59-71. https://doi.org/10.1016/S0141-1187(02)00022-6
  20. Fujiwara, R. (2005). A method for generation irregular waves using CADMAS-SURF and applicability for wave transformation and overtopping. Coastal Eng., JSCE, Vol.52, 41-45. https://doi.org/10.2208/proce1989.52.41
  21. Gervelas, R., Trarieux, F. and Patel, M. (2011). A time-domain simulator for an oscillating water column in irregular waves at model scale. Ocean Engineering. Vol. 38, 1-7. https://doi.org/10.1016/j.oceaneng.2010.10.016
  22. Goda, Y. (1985) : Random seas and design of maritime structures, University of Tokyo press, 323.
  23. Goda, Y. and Suzuki, Y. (1976). Estimation of incident and reflected waves in random wave experiment. Proc. 15th ICCE, ASCE, 828-845.
  24. Gouaud, F., Rey, V., Piazzola, J. and Van Hooff, R. (2010). Experimental study of the hydrodynamic performance of an onshore wave power device in the presence of an underwater mound. Coastal Engineering. Vol.57, 996-1005. https://doi.org/10.1016/j.coastaleng.2010.06.003
  25. Greenhow, M. and White, S.P. (1997). Optimal heave motion of some axisymmetric wave energy devices in sinusoidal waves. Applied Ocean Research, Vol.19, 141-159. https://doi.org/10.1016/S0141-1187(97)00020-5
  26. Heath, T., Whittaker, T.J.T. and Boake, C.B. (2000). The design, construction and operation of the LIMPET wave energy converter(Islay, Scotland). Proceedings of 4th European Wave Energy Conference, 49-55.
  27. Hirt. C. W. and Nichols, B.D. (1981). Volume of fluid(VOF) method for the dynamics of free boundaries. J. of Comput. Phys., Vol. 39, 201-225. https://doi.org/10.1016/0021-9991(81)90145-5
  28. Josset, C. and Clement, A.H. (2007). A time-domain numerical simulator for oscillating water column wave power plants. Renewable Energy, Vol.32, 1379-1402. https://doi.org/10.1016/j.renene.2006.04.016
  29. Malmo, O. and Reitan, A. (1985). Wave-power absorption by an oscillating water column in a channel. J. Fluid Mech., Vol.158, 153-175 https://doi.org/10.1017/S0022112085002592
  30. Mitsuyasu, H. (1970). On the growth of spectrum of wind-generated waves(2)-spectral shape of wind waves at finite fetch. Proc. Japanese Conf. on Coastal Eng., JSCE, 1-7.
  31. Nakamura, T. and Nakahashi, K. (2005). Effectiveness of a chamber- type water exchange breakwater and its ability of wave power extractions by wave induced vortex flows. Proceedings of Civil Engineering in the Ocean, Vol.21, 547-552 (in Japanese). https://doi.org/10.2208/prooe.21.547
  32. Ohneda, H., Igarashi, S., Shinbo, O., Sekihara, S., Suzuki, K. and Kubota, H. (1991). Construction procedure of a wave power extracting caisson breakwater. Proceedings of 3rd Symposium on Ocean Energy Utilization, 171-179.
  33. Paixao Conde, J.M. and Gato, L.M.C. (2008). Numerical study of the air-flow in an oscillating water column wave energy converter. Renewable Energy, Vol.33, 2637-2644. https://doi.org/10.1016/j.renene.2008.02.028
  34. Ravindran, M. and Koola, P.M. (1991). Energy from sea waves-the Indian wave energy program. Current Science, Vol.60, 676-680.
  35. Yin, Z., Shi, H. and Cao, X. (2010). Numerical simulation of water and air flow in oscillating water column air chamber. Proceedings of 20th International Offshore and Polar Engineering Conference, ISOPE, 796-801.

Cited by

  1. Experimental Study of Hydrodynamic Performance of Backward Bent Duct Buoy (BBDB) Floating Wave Energy Converter vol.26, pp.6, 2012, https://doi.org/10.5574/KSOE.2012.26.6.053
  2. Numerical Analysis on Settlement Behavior of Seabed Sand-Coastal Structure Subjected to Wave Loads vol.25, pp.1, 2013, https://doi.org/10.9765/KSCOE.2013.25.1.20
  3. Irregular Waves-Induced Seabed Dynamic Responses around Submerged Breakwater vol.28, pp.4, 2016, https://doi.org/10.9765/KSCOE.2016.28.4.177
  4. Brillouin-OTDR Strain Response Analysis of Optical Fiber-embedded Carbon Fiber Sheet vol.9, pp.3, 2018, https://doi.org/10.11004/kosacs.2018.9.3.001
  5. 3-Dimensional Numerical Analysis of Air Flow inside OWC Type WEC Equipped with Channel of Seawater Exchange and Wave Characteristics around Its Structure (in Case of Regular Waves) vol.30, pp.6, 2018, https://doi.org/10.9765/KSCOE.2018.30.6.242
  6. 3-Dimensional Numerical Analysis of Air Flow inside OWC Type WEC Equipped with Channel of Seawater Exchange and Wave Characteristics around Its Structure (in Case of Irregular Waves) vol.30, pp.6, 2018, https://doi.org/10.9765/KSCOE.2018.30.6.253