• Title/Summary/Keyword: airflow

Search Result 772, Processing Time 0.023 seconds

Resistance to Airflow of Grain as Affected by Grain Moisture Content (곡물(穀物)의 함수율(含水率) 변화(變化)에 따른 송풍저항(送風抵抗)에 관(關)한 연구(硏究))

  • Kim, M.S.;Kim, S.R.
    • Journal of Biosystems Engineering
    • /
    • v.11 no.2
    • /
    • pp.55-65
    • /
    • 1986
  • The resistance to the passage of airflow through various agricultural products is an important consideration in the design of an aeration or drying system. The amount of resistance to airflow varied widely from one kind of grain to another, and depended upon airflow rate, surface texture and shape of the particles, the size and configuration of voids, and foreign and fine material in the grain bed. The airflow rate was the major factor considered on this kind of study in the early stages. But these days, the studies on the resistance to airflow of grain affected by grain moisture content and foreign and fine material have been widely carried out. However the foreign an fine material in the grain bed could not be a major factor on the study in Korea because there were only a few grain process procedure after harvesting it. The objectives of this study were to investigate the effect of moisture content and airflow rate on airflow resistance to grain, and to develop a model to predict the static pressure drop across the grain bed as a function of moisture content and airflow rate. The rough rice varieties, Akibare, Milyang 15 (Japonica types), Samkwang, Backyang (Indica types)and covered barley variety, Olbori, which were harvested in 1985 were used in the experiment after cleaning them. Resistances to airflow of grain were investigated at four levels of moisture content (13-25%, wb.) for ten different airflow rates($0.01-0.15m^3/sm^2$). The results of this study are summarized as follows; 1. Theaverage bulk densities were $585.3kg/m^3$ for rough rice and $691.6kg/m^3$ for barley at the loose fill, and were $648.8kg/m^3$ for rough rice and $758.2kg/m^3$ for barley at the packed fill. The pressure drops at the packed fill beds were approximately 1.4 to 1.8 times higher than those at the loose fill beds. 2. The pressure drops across grain beds deceased with the increase of moisture content and increased with airflow rate. The decreasing rates of pressure drop across grain beds according to the moisture contents at the lower airflow rates were higher than those at the higher airflow rates, and the increasing rates of pressure drop according to the airflow rates at the lower moisture contents were higher those at higher moisture contents. 3. The pressure drop across barley bed were much higher than rough rice beds and the pressure drops across Japonica type rough rice beds were a little higher than Indica type. 4. The mathematical models to predict the pressure drop across grain beds as a function of moisture content and airflow rate were developed from these experiments.

  • PDF

Time Dependent Thermal Load Analysis of the Building with an Airflow Window System (공기식 집열창 시스템이 설치된 건물의 동적부하 해석)

  • Cho, S.H.;Park, S.D.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.2
    • /
    • pp.82-95
    • /
    • 1992
  • It has been known that the application of an airflow window system reduces the energy consumption compared with conventional double pane window in a building. But how to analyze thermal load in a building with an airflow window system has not been well known. so two kinds of method (Mode 1 and Mode 2) to analyze time dependent thermal load of the building with an airflow window system are presented in this study. The results of load analysis about the model building(total area : $4521m^2$, 3 floors) by Mode 2 show that the maximum cooling and heating load in a building with an airflow window system are decreased about 12-17% and about 19.5% than with double pane glass window, and yearly energy consumption with an airflow window system is saved about about 20% than with double pane glass window.

  • PDF

A Study on the Improvement of Airflow Deflection in a Cleanroom of Class 1000 (Class 1000 클린룸에서 편류 개선에 관한 연구)

  • Noh, Kwang-Chul;Lee, Seung-Chul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.4
    • /
    • pp.225-233
    • /
    • 2010
  • We performed 3 dimensional numerical study on the improvement of the airflow deflection in the cleanroom of Class 1000, which is presently operated for the manufacturing process in Korea. The Deflection angle and the non-uniformity were investigated to analyze the airflow characteristics and the performance of cleanroom with variations of the cleanroom occupancy state, the filters' arrangement, and the floor return air system. From the numerical results, we found out that the airflow pattern of the cleanroom is more unidirectional and stable in the condition of at-rest than in the condition of as~built. It is due to that the equipments installed in the cleanroom play a role like partitions, which prevent the airflow from inclining toward the recirculation air duct. And it is needed to arrange the filter units parallel to the equipments array without a gap between them for maintaining the unidirectional airflow pattern. Finally, we knew that it is very important to install the partition like the eyelid above the equipment to keep the unidirectional airflow around the equipments and remove the contaminants quickly.

The Impact of Double-Skin Façades on Indoor Airflow in Naturally Ventilated Tall Office Buildings

  • Yohan, Kim;Mahjoub M. Elnimeiri;Raymond J. Clark
    • International Journal of High-Rise Buildings
    • /
    • v.12 no.2
    • /
    • pp.129-136
    • /
    • 2023
  • Natural ventilation has proven to be an effective passive strategy in improving energy efficiency and providing healthy environments. However, such a strategy has not been commonly adopted to tall office buildings that traditionally rely on single-skin façades (SSFs), due to the high wind pressure that creates excessive air velocities and occupant discomfort at upper floors. Double-skin façades (DSFs) can provide an opportunity to facilitate natural ventilation in tall office buildings, as the fundamental components such as the additional skin and openings create a buffer to regulate the direct impact of wind pressure and the airflow around the buildings. This study investigates the impact of modified multi-story type DSFs on indoor airflow in a 60-story, 780-foot (238 m) naturally ventilated tall office building under isothermal conditions. Thus, the performance of wind effect related components was assessed based on the criteria (e.g., air velocity and airflow distribution), particularly with respect to opening size. Computational fluid dynamics (CFD) was utilized to simulate outdoor airflow around the tall office building, and indoor airflow at multiple heights in case of various DSF opening configurations. The simulation results indicate that the outer skin opening is the more influential parameter than the inner skin opening on the indoor airflow behavior. On the other hand, the variations of inner skin opening size help improve the indoor airflow with respect to the desired air velocity and airflow distribution. Despite some vortexes observed in the indoor spaces, cross ventilation can occur as positive pressure on the windward side and negative pressure on the other sides generate productive pressure differential. The results also demonstrate that DSFs with smaller openings suitably reduce not only the impact of wind pressure, but also the concentration of high air velocity near the windows on the windward side, compared to SSFs. Further insight on indoor airflow behaviors depending on DSF opening configurations leads to a better understanding of the DSF design strategies for effective natural ventilation in tall office buildings.

A Study on the Performance of Noise Level and Airflow Amount of a Kitchen Hood by the Different Conditions of Airflow Path. (레인지후드 덕트설치 조건에 따른 소음 및 풍량특성 연구)

  • Kim, Il-Ho;Kim, Youn-Jae;Lee, Yong-Jun;Lee, Kyu-Dong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.11a
    • /
    • pp.11-14
    • /
    • 2007
  • Noise level and Airflow amount of a kitchen hood are affected by the conditions of airflow path. Thus this study is expected to be used as a basic reference in designing airflow path of apartment housing throughout analysing changes in noise level and airflow amount from the various conditions of airflow path. Noise level generated by the kitchen hood is estimated in a kitchen and a living room of two constructed apartment houses, and an experiment is conducted in an half anechoic chamber to analyze noise level and airflow amount by the different length, diameter and number of windings of a round shaped soft duct which is connected to the kitchen hood. The measured results in apartment houses show that the noise level in both apartments exceeds the NC standard greatly in living spaces. In apartment A, a regular apartment house, the noise level was $NC-65{\sim}75$, $NC-45{\sim}60$ and NC-70, NC-45 in the kitchen and living room with an operation of kitchen hood in 1 and 3 stages. In apartment B, an apartment complex, the noise level was NC-55 and NC-60 in the kitchen and living room with an operation of kitchen hood in 3 stages. In particular, there was an increase of noise level at 125Hz-band resulted from an amplification of sound, which requires adequate measures in noise reduction. The results measured in Half anechoic chamber show 99% of airflow amount increase with the modification of a duct' s diameter from ${\Phi}$ 100mm to ${\Phi}$ 125mm, 37% of airflow amount increase with the modification of a duct' s diameter from ${\Phi}$ 125mm to ${\Phi}$ 150mm, and 173% of airflow amount increase with the modification of a duct' s diameter from ${\Phi}$ l00mm to ${\Phi}$ 150mm. The noise level was lower than the level measured in apartment housing about 20 in NC-value and 11.4 in dB(A)-value, which was interpreted as the effect of the load by the pressure condition at the rear end of the duct. Also, an amplification of sound in 125Hz-band influenced NC-value considerably, therefore effective measure is needed.

  • PDF

Airflow Characteristic Experiments for the Upper Plenum Design of Clean Room (클린룸의 상부 플레넘 설계를 위한 유동특성 실험)

  • Oh, M.D.;Bae, G.N.;Kim, S.C.;Lee, C.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.1 no.4
    • /
    • pp.276-289
    • /
    • 1989
  • The airflow characteristics in both the upper plenum and the clean space of clean room are investigated by measuring the pressure distribution of the upper plenum and the velocity profile in the clean space, at the various conditions of the supplied airflow rate, the volume of upper plenum and the air supply type. The performance of vertical air supply type and horizontal air supply type is analyzed in terms of the airflow uniformity which is frequently used in indicating the clean room performance, and the relations among the volume of upper plenum, the supplied airflow rate and the airflow uniformity are confirmed. The results of this experimental study can be applied to the designing of the upper plenum of clean room.

  • PDF

Particle Image Velocimetry Measurements in Nasal Airflow (코 내부 유로(비강) 내부 유동의 PIV해석)

  • Kim, Sung-Kyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.6
    • /
    • pp.811-816
    • /
    • 2002
  • For the first time, airflow in the nasal cavity of a normal Korean adult is investigated experimentally by PIV measurement. Nasal airflow can be subdivided into two interrelated categories; nasal airflow resistance and heat and mass transfer between the air stream and the walls of the nasal cavity. In this study, thanks to a new method for the model casting by a combination of the rapid prototyping and curing of clear silicone. a transparent rectangular box containing the complex nasal cavity can be made fur PIV experiments. The CBC PIV algorithm is used for analysis. Average and RMS distributions are obtained for inspirational and expiration nasal airflows. Data fer the airflow at the end of meatuses are obtained for the first time. Comparisons between western and Korean nasal airflows are appreciated. Due to the difference in geometry of the frontal part of nasal cavity, the flow near nares shows the difference.

DYNAMIC CHARACTERISTICS OF SPINNING DISK VIBRATION INFLUENCED BY CENTRIFUGAL AIRFLOW (광자기 기록 장치에서의 디스크 진동과 회전 공기 유동 특성에 관한 연구)

  • 김수경;송인상;손희기
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.206-210
    • /
    • 1998
  • A study on dynamic characteristics of rotating disks in magneto optical disk drives is presented. Natural frequencies of rotating disks are investigated experimentally and numerically. The frequency response and critical speeds of the ASMO disk are discussed. The characteristics of airflow around the disk and their effects on disk vibrations are also investigated. It is found that the numerical calculation of the natural frequencies of rotating disks agrees well with the experimental results. The airflow around the disk in the cartridge affects the characteristics of the disk vibrations to reduce the modal frequencies of the disk. The experiment shows that negative vertical offsets of the disk in the cartridge possibly increase the vibration amplitudes. As being influenced by the geometry of the cartridge, the rotation of the disk causes an asymmetric airflow in the presence of window.

  • PDF

Growth of frost formed on heat exchanger fins (열교환기 휜에서의 서리 성장)

  • An, Won-Jun;Kim, Jung-Soo;Lee, Kwan-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.256-261
    • /
    • 2008
  • In this study, frost behavior on two dimensional fins of a heat exchanger was experimentally investigated. Temperature distribution on a 2-D fin surface and frost properties were measured in the directions perpendicular to and parallel to airflow. The results indicated that the temperature gradient in the direction perpendicular to airflow was large because of fin heat conduction, while that in the direction parallel to airflow was very small. Frost thickness in the airflow direction decreased from the leading edge towards the trailing edge of the fin due to leading edge effect. The reduction rate of frost thickness in the airflow direction, however, was very small compared with that in the direction perpendicular to the airflow, as affected by the temperature distribution.

  • PDF

Characteristics of Frost Formed on Heat Exchanger Fins of Non-Uniform Temperature Distribution (불균일한 온도분포를 갖는 열교환기 휜에서의 착상 특성)

  • An, Won-Jun;Kim, Jung-Soo;Lee, Kwan-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.7
    • /
    • pp.373-379
    • /
    • 2009
  • In this study, frosting experiment was conducted to investigate the characteristics of frost formed on heat exchanger fins of non-uniform temperature distribution. Temperature distribution and frost characteristics of a 2-D fin surface were investigated in the airflow direction and the direction perpendicular to airflow. Temperature gradient was very small in the airflow direction, while it was large in the direction perpendicular to airflow due to fin heat conduction. The variations of the frost thickness gradient and the frost density gradient in the direction perpendicular to airflow were significant. On the other hand, the temperature gradient on frost surface in the direction perpendicular to airflow was significant at the early stage of frosting, while it decreased gradually as time elapsed.