DOI QR코드

DOI QR Code

A Simulation Study on Future Climate Change Considering Potential Forest Distribution Change in Landcover

잠재 산림분포 변화를 고려한 토지이용도가 장래 기후변화에 미치는 영향 모사

  • Kim, Jea-Chul (Dep. of Environmental Science, Kangwon National University) ;
  • Lee, Chong Bum (Dep. of Environmental Science, Kangwon National University) ;
  • Choi, Sungho (Dep. of Environmental Science and Ecological Engineering, Korea University)
  • 김재철 (강원대학교 환경과학과) ;
  • 이종범 (강원대학교 환경과학과) ;
  • 최성호 (고려대학교 환경생태공학과)
  • Received : 2011.09.24
  • Accepted : 2011.12.30
  • Published : 2012.02.29

Abstract

Future climate according to land-use change was simulated by regional climate model. The goal of study was to predict the distribution of meteorological elements using the Weather Research & Forecasting Model (WRF). The KME (Korea Ministry of Environment) medium-category land-use classification was used as dominant vegetation types. Meteorological modeling requires higher and more sophisticated land-use and initialization data. The WRF model simulations with HyTAG land-use indicated certain change in potential vegetation distribution in the future (2086-2088). Compared to the past (1986-1988) distribution, coniferous forest area was decreased in metropolitan and areas with complex terrain. The research shows a possibility to simulate regional climate with high resolution. As a result, the future climate was predicted to $4.5^{\circ}$ which was $0.5^{\circ}$ higher than prediction by Meteorological Administration. To improve future prediction of regional area, regional climate model with HyTAG as well as high resolution initial values such as urban growth and CO2 flux simulation would be desirable.

Keywords

References

  1. 기상청(2005-2008) 기후변화 협약대응 지역기후 시나리오 활용기술 개발 I, II, III, IV.
  2. 기상청 (2009) 기후변화정보센터, http://www.climate.go.kr.
  3. 김재철, 이종범, 최성호 (2010) 장래 기후 및 식생변화 시나리오를 이용한 복잡지형하에서의 국지기후변화 모사, 한국기후변화학회 추계학술대회 논문집, 36-37.
  4. 김형석, 김원식, 허창회 (2004) 식생역학모델을 이용한 기후-식생 관련성 연구, 한국기상학회 가을학술대회, 270-271.
  5. 문난경, 홍성유, 김종원, 임교선, 김순태 (2009) 지구온난화에 따른 한반도 대기질 영향평가를 위한 전구규모-지역규모-도시규모의 시스템 구축 및 검증, 한국대기환경학회 추계학술대회 논문집, 541 -543.
  6. 이상철, 최성호, 이우균, 유성진, 변재균 (2011) 기온감율을 적용한 기후자료가 잠재 산림분포 예측에 미치는 영향, 한국지형공간정보학회지, 19(2), 19-27.
  7. 안중배, 허지나, 심교문 (2010) 수치예보모형을 이용한 역학적 규모축소 기법을 통한 농업기후 지수 모사, 한국농림기상학회지, 12(1), 1-10.
  8. 안중배, 홍자영, 심교문 (2010) 대기-해양-지면-해빙 접합 대순환 모형으로 모의된 이산화탄소 배증시 한반도 농업기후지수 변화분석, 한국농림기상학회지, 12(1), 10-22.
  9. 임희정, 이영희 (2008) 한국기후 조건에서 CLMDGVM의 민감도 실험, 한국기상학회 가을학술대회 논문집, 384-385.
  10. Beniston, M., Keller, F., Koffi, B., and Goyette, S. (2003) Estimates of snow accumulation and volume in the Swiss Alps under changing climatic conditions. Theor. and Appl. Clim., 76, 125-140. https://doi.org/10.1007/s00704-003-0016-5
  11. Foley, J. A., S. Levis, I. Prentice, D. Colin-Pollard, and S. L. Thompson (1998) Coupling dynamic models of climate and vegetation, Global Change Biol., 4, 561-579. https://doi.org/10.1046/j.1365-2486.1998.t01-1-00168.x
  12. Foken, T (2002) Micro-meteorology, Springer, e-ISBN: 978-3-540-74666-9.
  13. Frei, C., R. Scholl, S. Fukutome, J. Schmidli, and P. L. Vidale (2006) Future change of precipitation extremes in Europe: Intercomparison of scenarios from regional climaet models, J. Geogpys, Res., 111, D06105.
  14. Gerbaux, M., C. Genthon, P. Etchevers, C. Vincent and J.P. Dedieu (2006) Surface mass balance of glaciers in the French Alps : distributed modeling and sensitivity to climate change. Journal of Glaciology, Vol 51, $n^{\circ}$ 175, 561-572.
  15. Im, E. S., J. B. Ahn, W. T. Kwon, F. Giorgi (2008) Multi-decadal scenario simulation over Korea using a on-way double-nested regional climate model system. Part 2: future climate projection, Climate Dynamics, 30(2/3), 239-254. https://doi.org/10.1007/s00382-007-0282-5
  16. IPCC (2007) General Guidelines on the Use of Scenarios Data for Climate Impact and Adaptation Assessment. Task Group on Data and Scenario Support for Impact and Climate Assessment(TGICA).
  17. Jonathan A. FOLEY, Samuel Levis, I.Colin Prentice, David Pollard, Starley L. Thompson (1998) Coupling dynamic models of climate and vegetation, Global change biology, 4, 561-579. https://doi.org/10.1046/j.1365-2486.1998.t01-1-00168.x
  18. K. O. Boo, W. T. Kwon, J. K. Kim, H. J. Baek (2004) Changes of vegetation distribution over East Asia using the regional climate projection: An experiment with the BIOME4, 한국기상학회 가을 학술대회, 415-416.
  19. Luo, Y (2007) Terrestrial carbon-cycle feedback to climate warming. Annual Review of Ecology, Evolution, and Systematics 38, 683-712. https://doi.org/10.1146/annurev.ecolsys.38.091206.095808
  20. Martin Claussen (1994) On coupling global biome models with climate models, Climate Research, 4, 203-221. https://doi.org/10.3354/cr004203
  21. Rustad, L, Campbell, J, Marion, G. (2001) A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126, 543-562. https://doi.org/10.1007/s004420000544
  22. S. H. Choi, W. K. Lee, H. Kawk, S. Kim (2009) Prediction the vgetation distribution and terrestrial carbon-fluxes using MC1 model. International Symposium on Remote Sensing Technical paper.
  23. S. H. Choi (2010) Assessment of Climate Change Impact on Forest Cover Distribution using the Hydrological and Thermal Indices in Korea, The Degree of Master of Science, Korea university.
  24. YJ Lim, SK Seoul, TY Lee, KY Byun, S-H Shin, N-S Cho, S-H Park (2008) Korea Land Data Assimilation System (KLDAS) and its application using WRF.
  25. Yasutaka Wakazuki, Sachie Kanada, Chiashi Muroi, Akihiro Hashimoto, Teruyuki Kato, Masaomi Nakamura, Akira Noda, Masanori Yoshizaki, Kazuaki Yasunaga (2007) Regional Climate Projection Experiments on the Baiu Frontal Activity around the Japan Islands Using a Non-Hydrostatic Cloud-System-Resolving Model, Earth Simulator, 8, 13-25.