DOI QR코드

DOI QR Code

Performance Analysis of Compensation Algorithm for Localization Using the Equivalent Distance Rate and the Kalman Filter

균등거리비율 및 칼만필터를 이용한 위치인식 보정 알고리즘의 성능분석

  • 권성기 (캐드윈시스템주식회사 캐드개발팀) ;
  • 이동명 (동명대학교 컴퓨터공학과)
  • Received : 2011.10.06
  • Accepted : 2012.04.17
  • Published : 2012.05.30

Abstract

The CSS(Chirp Spread Spectrum) technology is used for developing various WPAN(Wireless Personal Area Network) application fields in general, and it can be adapted to implement localization systems especially using SDS-TWR(Symmetric Double Sided - Two Way Ranging). But the ranging errors are occurred in many practical applications due to some interferences by some experiments. Thus, the compensation algorithm for localization is required for developing localization applications. The suggested compensation algorithm that is named KF_EDR(Kalman Filter and Equivalent Distance Rate) for localization in order to reduce the ranging errors is suggested in this paper. The KF_EDR compensation algorithm for localization is mainly composed of the AEDR(Algorithm of Equivalent Distance Rate) and the Kalman Filter. It is confirmed that the improved error ratio of the KF_EDR are 10.5% and 4.2% compared with the AEDR algorithm in lobby and stadium. From the results, it is analyzed that the KF_EDR can be widely used for some localization system in ubiquitous society.

CSS(Chirp Spread Spectrum)는 WPAN(Wireless Personal Area Network) 환경에서 SDS-TWR(Symmetric Double Sided - Two Way Ranging) 기반의 위치인식 시스템을 구현하는 기술로 사용된다. 그러나 CSS의 SDS-TWR은 전파 및 장애물과 같은 환경에 따른 간섭으로 인해 레인징 오차가 발생한다. 따라서 위치인식 시스템 개발을 위해서는 이를 보정하기 위한 보정 알고리즘이 요구된다. 본 논문은 위치인식 정확도 성능 향상을 위하여 AEDR(Algorithm of Equivalent Distance Rate) 알고리즘과 칼만필터가 적용된 KF_EDR(Kalman Filter and Equivalent Distance Rate) 보정 알고리즘을 제안하고, 그 성능을 분석 및 평가하였다. 실험 결과, KF_EDR은 AEDR 알고리즘에 비해 위치인식 정확도를 복도 그리고 운동장에서 각각 10.5%, 4.2% 더 개선시켰다. 이 결과는 위치인식 데이터의 신뢰성을 향상시킴 으로써 실제 위치인식 시스템 구현에 상당한 도움을 줄 수 있을 것으로 판단된다.

Keywords

References

  1. M. Weiser, "The Computer for the 21st Century," Scientific American, pp.94-104, 1991.
  2. Ferit Ozan Akgul and Kaveh Pahlavan, "Location Awareness for Every Smart Computing," IEEE, Proceedings of the 16th international conference on Telecommunications, pp.2-7, May 2009.
  3. 한국전파진흥협회 기술지원팀, "Wireless LAN 최신기술동향(IEEE802.11n, CSS, Passive Scanning중심)," 한국전파진흥협회, SPECTRUM 이슈 리포트 제 15호, pp.1-14, 2009. 9.
  4. IEEE 802.15.4a, "Part 15.4 : Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Row-rate Wireless Personal Area Network(LR-WPANs)," draft P802.15.4a/D7, Jan. 2007.
  5. Yi Jiang and Victor C.M. Leung, "An Asymmetric Double Sided Two-Way Ranging for Crystal Offset," ISSSE '07, pp.525-528, Aug. 2007.
  6. Seong Ki Kwon, Dong Myung Lee, "A Design and Implementation of Compensation Algorithm for Radiodetermination Error using Determination Coordinator Value of Equivalent Distance Rate," KICS, Vol. 35, No. 9, pp.852-858, Aug. 2010.
  7. G. Welch and G. Bishop, "An Introduction to the Kalman Filter," UNC-Chapel Hill TR 95-041, July 2006.
  8. Hyeonsig Jeon, Na-Ri Kim, Hyun-Ju Park, "A Study on Effective Location Determination System in Indoor Environment," KICS, Vol.34, No.2, pp.119-129, Feb. 2009.

Cited by

  1. ESD(Exponential Standard Deviation) Band centered at Exponential Moving Average vol.22, pp.2, 2016, https://doi.org/10.13088/jiis.2016.22.2.115