• Title/Summary/Keyword: SDS-TWR

Search Result 29, Processing Time 0.064 seconds

Asynchronous Ranging Method using Estimated Frequency Differences in Wireless Sensor Networks (무선 센서망에서의 주파수 차이 추정 비동기 Ranging 방식)

  • Nam, Yoon-Seok;Huh, Jae-Doo
    • The KIPS Transactions:PartC
    • /
    • v.15C no.1
    • /
    • pp.31-36
    • /
    • 2008
  • The clock frequency difference of sensor nodes is one of main parameters in TOF estimation and affect to degrade ranging algorithms to estimate positions of mobile nodes in wireless sensor networks. The specification of IEEE802.15.4a describes asynchronous TWR and SDS-TWR insensitive to frequency difference without any additional network synchronization. But the TWR and SDS-TWR can not eliminate sufficiently the effect of frequency difference of node pair, packet processing delay and its difference. Especially use of low cost oscillator with wide range offset, sensor node with different hardware and software can make the positioning errors worse. We propose an estimation method of frequency differences, and apply the measured frequency differences to TWR and SDS-TWR. We evaluate the performance of the proposed algorithm with simulation, and make certain that the proposed method enhances the performance of existing algorithms with positioning errors less than 25 cm.

A Study on the Compensation Algorithm based on Error Rate Offset of Distance Measurement (거리측정의 오차비율 오프셋을 적용한 보정알고리즘 연구)

  • Choi, Chang-Yong;Lee, Dong-Myung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.914-919
    • /
    • 2010
  • It is confirmed that as the distance measurements accuracy of the SDS-TWR(Symmetric Double-Sided Two-Way Ranging) based on CSS(Chirp Spread Spectrum) is considerably degraded due to frequency interference and it causes to severe errors in the localization applications. In this paper, the compensation algorithm based on error rate offset of distance measurement ($CA_d$) is proposed for the purpose to reduce the ranging errors due to by the SDS-TWR ranging problems. The $CA_d$ measures the distance values between two nodes by means of 1m interval about 1~25m distances in the SDS-TWR, and compensates the distance values using the parameters related to the distance compensation. From the experiments, it is analyzed that the $CA_d$. have reduced the distance error to average 95cm and maximum 526cm, and the distance error by the $CA_d$ was below about 60cm in the 25m distances. In particular, the performance of the distance measurements accuracy by the $CA_d$ is very high in LOS(Line Of Sight) environments.

SDS-TWR based Location Compensation Mechanism for Localization System in Wireless Sensor Network

  • Lee, Dong-Myung
    • Journal of Engineering Education Research
    • /
    • v.13 no.5
    • /
    • pp.76-80
    • /
    • 2010
  • In this paper, the Location Compensation Mechanism using equivalent distance rate ($LCM_{edr}$) for localization system based on SDS-TWR (Symmetric Double-Sided Two-Way Ranging) in wireless sensor network is proposed. The performance of the mechanism is experimented in terms of two types of the localization tracking scenarios of indoor and outdoor environments in university campus. From the experimentations, the compensation ratio in the $LCM_{edr}$ is better than that in SDS-TWR about 90% in indoor/outdoor environments in scenario 1 but also is better than that of SDS-TWR about 91.7% in indoor environment and about 100% in outdoor environment in scenario 2 respectively.

  • PDF

Performance Analysis of Compensation Algorithm for Localization using Equivalent Distance Rate (균등거리비율을 적용한 위치인식 보정 알고리즘 설계 및 성능분석)

  • Kwon, Seong-Ki;Lee, Dong-Myung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.4
    • /
    • pp.1248-1253
    • /
    • 2010
  • In this paper, the compensation algorithm for localization using the concept of equivalent distance rate(AEDR) in order to compensate ranging error in the SDS-TWR(Symmetric Double-Sided Two-Way Ranging) is proposed and the performance of the proposed algorithm is analyzed by the localization experiments. The ranging error of the SDS-TWR in the distance between mobile node and beacon node is measured to average 1m~8m by ranging experiments. But it is confirmed that the performance of the localization by the AEDR is better than that of the SDS-TWR 4 times in university auditorium and corridor, and the localization error of above 3~10m is reduced to average 2m and that of below 3m is reduced to average 1m respectively. It is concluded that the AEDR is superior to the NLOS(Non Line Of Sight) than LOS(Line Of Sight) in performance of ranging compensation for localization, and the AEDR is more helpful to localization systems practically considering the environment of sensor networks is under NLOS.

Performance Analysis of the Localization Compensation Algorithm based on Measured Error Patterns of Distance in WPAN (WPAN에서 거리별 측정오차 패턴을 적용한 위치인식 보정 알고리즘의 성능 분석)

  • Choi, Chang-Yong;Lee, Dong-Myung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.5
    • /
    • pp.1627-1632
    • /
    • 2010
  • The performance characteristics and the disadvantages in the compensation algorithm based on the Measured Error Patterns of Distance that is already developed are analyzed, and the localization compensation algorithm(DCA2) based on measured error patterns of distance in WPAN that is the enhanced version of DCA1 is supposed in this paper. From the experimental results, it is confirmed that the localization performance of DCA1 and DCA2 is superior than SDS-TWR as each average above 60% and 75% of the total localizing measurement points in 2 experimental regions, and the localization performance of DCA2 is especially better than SDS-TWR as 91% of the points in $15m{\times}15m$ experimental region. In addition to this, it is confirmed that DCA2 is better than DCA1 as each 16% and 22% of the total localizing measurement points in $10m{\times}10m$ and $15m{\times}15m$ scaled experimental regions, and the average localization errors of DCA1 and DCA2 are lower than SDS-TWR to each 7~12% and 20%. Thus, it can be inferred that DCA2 is the best localization algorithm among 3 localization algorithms SDS-TWR, and DCA2.

Packet-Reduced Ranging Method with Superresolution TOA Estimation Algorithm for Chirp-Based RTLS

  • Oh, Daegun;Go, Seungryeol;Chong, Jong-Wha
    • ETRI Journal
    • /
    • v.35 no.3
    • /
    • pp.361-370
    • /
    • 2013
  • In this paper, a packet-reduced ranging method using a superresolution time of arrival estimation algorithm for a chirp-based real-time locating system is presented. A variety of ranging methods, such as symmetric double-sided two-way ranging (SDS-TWR), have been proposed to remove the time drift due to the frequency offset using extra ranging packets. Our proposed method can perform robust ranging against the frequency offset using only two ranging packets while maintaining almost the same ranging accuracy as them. To verify the effectiveness of our proposed algorithm, the error performance of our proposed ranging method is analyzed and compared with others. The total ranging performance of TWR, SDS-TWR, and our proposed TWR are analyzed and verified through simulations in additive white Gaussian noise and multipath channels in the presence of the frequency offset.

Performance Evaluation of SDS-TWR Ranging Algorithms for CPS Based on Accurate Wireless Localization (정밀한 무선측위 기반 CPS를 위한 SDS-TWR 거리측정 기법의 성능 평가)

  • Yoo, Joonhyuk;Kim, Hiecheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.9
    • /
    • pp.570-577
    • /
    • 2014
  • Range-based real time localization systems require superior localization techniques as well as accurate ranging algorithms for better performance. To evaluate the ranging accuracy between two nodes in practical environments, this paper does not only present a qualitative analysis by computing a distance equation under SDS-TWR measurement model of no symmetry assumption, but also executes a quantitative evaluation by doing experiments after building up a test network employing the developed sensor node. Experimental results show that the ranging accuracy of the proposed implementation of IEEE 802.15.4a software stack is superior with smaller average error rate by 60% to one of the commercial Nanotron's reference development kit.

Implementation of IEEE 802.15.4a Software Stack for Ranging Accuracy Based on SDS-TWR (SDS-TWR 기반의 거리측정 정확도를 위한 IEEE 802.15.4a 소프트웨어 스택 구현)

  • Yoo, Joonhyuk;Kim, Hiecheol
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.6
    • /
    • pp.17-24
    • /
    • 2013
  • The localization accuracy in wireless sensor networks using ranging-based localization algorithms is greatly influenced by the ranging accuracy. Software implementation of HAL(Hardware Abstraction Layer) and MAC(Medium Access Layer) should seamlessly deliver the raw performance of ranging-based localization provided by hardware capability fully to the applications without degrading the raw performance. This paper presents the design and implementation of the software stack for IEEE 802.15.4a which supports normal ranging mode of the Nanotron's NA5TR1 RF chip. The experiment results shows that average ranging error rate with our implementation is 24.5% for the normal mode of the SDS-TWR ranging scheme.

Ranging Performance Evaluation of Relative Frequency Offset Compensation in High Rate UWB (고속 UWB의 상대주파수 차이 보상에 의한 거리추정 성능평가)

  • Nam, Yoon-Suk;Lim, Jae-Geol;Jang, Ik-Hyeon
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.7
    • /
    • pp.76-85
    • /
    • 2009
  • UWB signal with high resolution capability can be used to estimate ranging and positioning in wireless personal area network. The node works on its local clock and the frequency differences of nodes have serious affects on ranging algorithms estimating locations of mobile nodes. The low rate UWB, IEEE802.15.4a, describes asynchronous two way ranging methods such as TWR and SDS-TWR working without any additional network synchronization, but the algorithms can not eliminate the effect of clock frequency differences. Therefore, the mechanisms to characterize the crystal difference is essential in typical UWB PHY implementations. In high rate UWB, characterizing of crystal offset with tracking loop is not required. But, detection of the clock frequency offset between the local clock and remote clock can be performed if there is little noise induced jitter. In this paper, we complete related ranging equations of high rate UWB based on TWR with relative frequency offset, and analyze a residual error in the ideal equations. We also evaluate the performance of the relative frequency offset algorithm by simulation and analyze the ranging errors according to the number of TWR to compensate coarse clock resolution. The results show that the relative frequency offset compensation and many times of TWR enhance the performance to converge to a limited ranging errors even with coarse clock resolutions.

Compensation System for Wireless Location based on Pyroelectric sensor (초전센서를 이용한 무선 위치 인식 보정 시스템)

  • Sung, Joo-Hyun;Cho, Hyun-Jong;Kim, Yoon-Sik;Seo, Dong-Hoan
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2012.06a
    • /
    • pp.133-133
    • /
    • 2012
  • 본 연구에서는 현재의 실내 위치인식시스템에 있어서 오차 발생 문제점을 초전센서를 이용하여 보완하였다. 기존의 CSS기술은 SDS-TWR(Symmetric Double-Sided Two-Way Ranging) 기반의 위치인식시스템을 구현하는 기술로 사용되고 있으나 전파의 반사 및 간섭에 의해 레인징의 오차가 크게 발생하고 수신 감도가 현저하게 떨어지는 현상이 발생한다. 따라서 본 논문에서는 환경적인 제약을 받는 공간에서 CSS을 이용한 SDS-TWR과 초전센서를 사용하여 수신불량과 오차를 줄여 사용자의 위치인식을 가능하도록 하였다.

  • PDF