DOI QR코드

DOI QR Code

Structural and Electrical Properties of (Na0.465K0.465Bi0.07)(Nb0.93Ti0.07)O3-0.08MnO2 Ceramics with Variation of Sintering Temperature

소결온도에 따른 (Na0.465K0.465Bi0.07)(Nb0.93Ti0.07)O3-0.08MnO2 세라믹스의 구조적, 전기적 특성

  • Lee, Tae-Ho (Department of Ceramic Engineering, Eng. Res. Inst. Gyeongsang National University) ;
  • Yeo, Jin-Ho (Department of Ceramic Engineering, Eng. Res. Inst. Gyeongsang National University) ;
  • Lee, Sung-Gap (Department of Ceramic Engineering, Eng. Res. Inst. Gyeongsang National University)
  • 이태호 (경상대학교 세라믹공학과) ;
  • 여진호 (경상대학교 세라믹공학과) ;
  • 이성갑 (경상대학교 세라믹공학과)
  • Received : 2012.05.22
  • Accepted : 2012.06.25
  • Published : 2012.07.01

Abstract

In this study, lead-free $(Na_{0.465}K_{0.465}Bi_{0.07})(Nb_{0.93}Ti_{0.07})O_3-0.08MnO_2$ ceramics were fabricated by conventional mixed oxide method. Structural and electrical properties of lead-free $(Na_{0.465}K_{0.465}Bi_{0.07})(Nb_{0.93}Ti_{0.07})O_3-0.08MnO_2$ ceramics with the variation of sintering temperature were investigated. As results of x-ray diffraction analysis, all specimens showed a typical polycrystalline perovskite structure without presence of the second phase. Sintered density increased with an increases of sintering temperature and the specimen sintered at $1,020^{\circ}C$ showed the maximum value of 4.5 $g/cm^3$. The average grain size of the $(Na_{0.465}K_{0.465}Bi_{0.07})(Nb_{0.93}Ti_{0.07})O_3-0.08MnO_2$ specimen sintered at $1,020^{\circ}C$ is about 0.83 ${\mu}m$. Electromechanical coupling factor, relative dielectric constant and dielectric loss of $(Na_{0.465}K_{0.465}Bi_{0.07})(Nb_{0.93}Ti_{0.07})O_3-0.08MnO_2$ specimens sintered at $1,020^{\circ}C$ were 0.252, 741 and 0.043% respectively.

Keywords

References

  1. S. H. Park, C. W. Ahn, S. Nahm, and J. S. Song, Jpn. J. Appl. Phys., 43, L1072 (2004). https://doi.org/10.1143/JJAP.43.L1072
  2. R. Zuo, J. R. R. Cen, and L. Li, J. Am. Ceram. Soc., 89, 2010 (2006). https://doi.org/10.1111/j.1551-2916.2006.00991.x
  3. B. Q. Min, J. F. Wang, P. Qi, and G. Z. Zang, J. Appl. Phys., 101, 054103 (2007). https://doi.org/10.1063/1.2436923
  4. Y. H. Kim, D. Y. Heo, W. P. Tai, and J. S. Lee, Journal of the Korean Ceramic Society, 45, 363 (2008). https://doi.org/10.4191/KCERS.2008.45.6.363
  5. Y. Xu, "Ferroelectric Materials and Their Applications" (North holland, Amsterdam, 1911) p. 101.
  6. S. H. Moon, Y. S. Ham, Y. H. Lee, S. M. Nam, and J. H. Koh, J. Korean Phys. Soc., 56, 399 (2010). https://doi.org/10.3938/jkps.56.399
  7. Y. Guo, K. Kakimoto, and H. Ohsato, Appl. Phys. Lett., 85, 4121 (2004). https://doi.org/10.1063/1.1813636
  8. R. J. Xie, Y. Akimune, R. Wang, N. Hirosaki, and T. Nishimuna, Jpn. J. Appl. Phys., 42, 7404 (2003). https://doi.org/10.1143/JJAP.42.7404