DOI QR코드

DOI QR Code

Mobility Enhancement in a Pentacene Thin-film Transistor by Shortening the Intermolecular Distance

분자 간 거리 감소에 의한 펜타센 박막트랜지스터의 전하 이동도 향상

  • Jung, Tae-Ho (Department of Electronic and IT Media Engineering, Seoul National University of Science and Technology)
  • 정태호 (서울과학기술대학교 전자IT미디어공학과)
  • Received : 2012.04.13
  • Accepted : 2012.06.24
  • Published : 2012.07.01

Abstract

In this study, the influence of the intermolecular distance on the charge mobility in a pentacene thin-film was investigated. In order to increase the mobility which depends on the ${\pi}$-overlap between molecules, the intermolecular distance was shortened by compressive force along the conduction channel. Pentacene thin-film was fabricated on flexible substrates bent outward at different radii to stretch the gate dielectric surface and then the substrates were unbent, producing the compressive force to the film. The result showed that the mobility increased proportionally to the strain applied during the pentacene deposition and the molecular packing inside a grain was not optimal for the charge transport.

Keywords

References

  1. J. E. Anthony, D. L. Eaton, and S. R. Parkin, Org. Lett., 4, 15 (2002). https://doi.org/10.1021/ol0167356
  2. M. C. Delgado, K. R. Pigg, D. A. da Silva Filho, N. E. Gruhn, Y. Sakamoto, T. Suzuki, R. M. Osuna, J. Casado, V. Hernandez, J. T. L. Navarrete, N. G. Martinelli, J. Cornil, R. S. Sanchez-Carrera, V. Coropceanu, and J. L. Bredas, J. Am. Chem. Soc., 131, 1502 (2009). https://doi.org/10.1021/ja807528w
  3. J. Rivnay, L. H. Jimison, J. E. Northrup, M. F. Toney, R. Noriega, S. Lu, T. J. Marks, A. Facchetti, and A. Salleo, Nature Materials, 8, 952 (2009). https://doi.org/10.1038/nmat2570
  4. J. L. Bredas, J. P. Calbert, D. A. da Silva Filho, and J. Cornil, Proc. Natl. Acad. Sci., 99, 5804 (2002). https://doi.org/10.1073/pnas.092143399
  5. A. Dodabalapur, L. Torsi, and H. E. Katz, Science, 268, 270 (1995). https://doi.org/10.1126/science.268.5208.270
  6. D. Knipp, R. A. Street, and A. R. Volkel, Appl. Phys. Lett., 82, 3907 (2003). https://doi.org/10.1063/1.1578536
  7. W. Y. Chou, C. W. Kuo, H. L. Cheng, Y. R. Chen, F. C. Tang, F. Y. Yang, D. Y. Shu, and C. C. Liao, Appl. Phys. Lett., 89, 112126 (2006). https://doi.org/10.1063/1.2354426
  8. D. J. Gundlach, Y. Y. Lin, T. N. Jackson, S. F. Nelson, and D. G. Schlom, IEEE Electron Devices Lett., 18, 87 (1997). https://doi.org/10.1109/55.556089
  9. G. Giri, E. Verploegen, S. C. B. Mannsfeld, S. Atahan-Evrenk, D. H. Kim, S. Y. Lee, H. A. Becerril, A. Aspuru-Guzik, M. F. Toney, and Z. Bao, Nature, 480, 504 (2011). https://doi.org/10.1038/nature10683
  10. C. D. Dimitrakopoulos and P. R. L. Malenfant, Adv. Mater., 14, 99 (2002). https://doi.org/10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9
  11. R. Bourguiga, G. Horowitz, F. Garnier, R. Hajlaoui, S. Jemai, and H. Bouchriha., Eur. Phys. J. Appl., 19, 117 (2002). https://doi.org/10.1051/epjap:2002057
  12. S. E. Fritz, S. M. Martin, C. D. Frisbie, M. D. Ward, and M. F. Toney, J. Am. Chem. Soc., 126, 4084 (2004). https://doi.org/10.1021/ja049726b
  13. S. Steudel, S. D. Vusser, S. D. Jonge, D. Janssen, S. Verlaak, J. Genoe, and P. Heremans, Appl. Phys. Lett., 85, 4400 (2004). https://doi.org/10.1063/1.1815042
  14. H. L. Cheng, X. W. Liang, W. Y. Chou, Y. S. Mai, C. Y. Yang, L. R. Chang, and F. C. Tang., Organic Electronics, 10, 289 (2009). https://doi.org/10.1016/j.orgel.2008.12.002
  15. C. C. Mattheus, G. A. d. Wijs, R. A. d. Groot, and T. T. M. Palstra, J. Am. Chem. Soc., 125, 6323 (2003). https://doi.org/10.1021/ja0211499
  16. H. Klauk, G. Schmid, W. Radlik, W. Weber, L. Zhou, C. D. Sheraw, J. A. Nichols, and T. N. Jackson., Solid-State Electron., 47, 297 (2003). https://doi.org/10.1016/S0038-1101(02)00210-1