DOI QR코드

DOI QR Code

Synthesis and Electrochemical Properties of Nitrogen Doped Mesoporous TiO2 Nanoparticles as Anode Materials for Lithium-ion Batteries

질소도핑 메조다공성 산화티타늄 나노입자의 합성 및 리튬이온전지 음극재로의 적용

  • 윤태관 (계명대학교 자연과학대학 화학과) ;
  • 배재영 (계명대학교 자연과학대학 화학과) ;
  • 박성수 (삼성SDI 주식회사 중앙연구소) ;
  • 원용선 (부경대학교 화학공학과)
  • Received : 2012.05.01
  • Accepted : 2012.05.31
  • Published : 2012.06.30

Abstract

Mesoporous anatase $TiO_2$ nanoparticles have been synthesized by a hydrothermal method using a tri-block copolymer as a soft template. The resulting $TiO_2$ materials have a high specific surface area of $230\;m^2/g$, a predominant pore size of 6.8 nm and a pore volume of 0.404 mL/g. The electrochemical properties of mesoporous anatase $TiO_2$ for lithium ion battery (LIB) anode materials have been investigated by typical coin cell tests. The initial discharge capacity of these materials is 240 mAh/g, significantly higher than the theoretical capacity (175 mAh/g) of LTO ($Li_4Ti_5O_{12}$). Although the discharge capacity decreases with the C-rate increase, the mesoporous $TiO_2$ is very promising for LIB anode because the surface for the Li insertion is presented significantly with mesopores. Nitrogen doping has a certain effect to control the capacity decrease by improving the electron transport in $TiO_2$ framework.

Tri-block copolymer를 유연 템플레이트로 사용한 수열합성법에 의해 메조다공성 아나타제상 $TiO_2$ 나노입자를 합성하였다. 합성된 $TiO_2$ 재료는 $230m^2/g$의 매우 큰 표면적을 가졌으며 6.8 nm의 기공크기와 0.404 mL/g의 기공부피를 보였다. 리튬이 온전지 음극재로서의 가능성을 확인하기 위해 코인셀 테스트를 실시하였는데 0.1 C에서 240 mAh/g의 방전 용량을 얻었으며 이는 LTO ($Li_4Ti_5O_{12}$)의 이론 방전 용량인 175 mAh/g 보다 훨씬 큰 값이었다. 비록 C-rate가 증가함에 따라 용량이 감소하는 모습을 보였으나 메조다공성 $TiO_2$ 재료는 리튬 이온이 침투할 수 있는 큰 표면적을 제공할 수 있다는 면에서 여전히 리튬 이온전지의 음극재로서 가능성이 있다. 추가적으로 질소를 도핑하여 $TiO_2$ framework 내의 전자 이동을 향상시킴으로써 C-rate 증가에 따른 용량 감소를 일부 제어할 수 있음을 확인하였다.

Keywords

References

  1. Kwak, B. S., Choi, H. -C., Woo, J. -W., Lee, J. -S., An, J. -B., Ryu, S. G., and Kang, M., "Photo-electrochemical Hydrogen Production over P- and B- Incorporated $TiO_2$ Nanometer Sized Photo-catalysts," Clean Technol., 17, 78-82 (2011).
  2. Yun, T. K., Park, S. S., Kim, D., Hwang, Y. -K., Huh, S., Bae, J. Y., and Won, Y. S., "Pore-size Effect on Photovoltaic Performance of Dye-sensitized Solar Cells Composed of Mesoporous Anatase-titania," J. Power Sources, 196, 3678-3682 (2011). https://doi.org/10.1016/j.jpowsour.2010.11.162
  3. "Energy Storage Research and Development," Annual Progress Report, Department of Energy (USA) (2009).
  4. Bang, J. M., Cho, Y. I., and Na, B. -K., "Manufacture of Titaniasilica Composite Anode Materials by Sol-gel Method," Clean Technol., 16, 140-144 (2010).
  5. Nelson, P., "Advanced Lithium-ion Batteries for Plug-in Hybrid- electric Vehicles," Technical Report, Argonne National Laboratory (USA).
  6. Reddy, M. A., Kishore, M. S., Pralong, V., Caignaert, V., Varadaraju, U. V., and Raveau, B., "Room Temperature Synthesis and Li Insertion into Nanocrystalline Rutile $TiO_2$," Electrochem. Commun., 8, 1299-1303 (2006). https://doi.org/10.1016/j.elecom.2006.05.021
  7. Guo, Y. -G., Hu, Y. -S., and Maier, J., "Synthesis of Hierarchically Mesoporous Anatase Spheres and their Application in Lithium Batteries," Chem. Commun., 2783-2785 (2006).
  8. Wang, D., Choi, D., Yang, Z., Viswanathan, V. V., Nie, Z., Wang, C., Song, Y., Zhang, J. -G., and Liu, J., "Synthesis and Li-ion Insertion Properties of Highly Crystalline Mesoporous Rutile $TiO_2$," Chem. Mater., 20, 3435-3442 (2008). https://doi.org/10.1021/cm8002589
  9. Lai, C., Yuan, X. C., Cao, X. L., Qiao, Q. Q., Wang, Y. L., and Ye, S. H., "Enhanced High-Rate Capability of the C-N-Doped $TiO_2$ as Anode Material for Lithium-Ion Battery," Electrochem. Solid-State Lett., 15, A65-A67 (2012). https://doi.org/10.1149/2.023205esl
  10. Yan, M. C., Chen, F., Zhang, J. L., and Anpo, M., "Preparation of Controllable Crystalline Titania and Study on the Photocatalytic Properties," J. Phys. Chem. B, 109, 8673-8678 (2005). https://doi.org/10.1021/jp046087i
  11. Kruk, M., and Jaroniec, M., "Gas Adsorption Characterization of Ordered Organic-inorganic Nanocomposite Materials," Chem. Mater., 13, 3169-3183 (2001). https://doi.org/10.1021/cm0101069
  12. Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., and Taga, Y., "Visible-light Photocatalysis in Nitrogen-doped Titanium Oxides," Sci., 293, 269-271 (2001). https://doi.org/10.1126/science.1061051
  13. Sathish, M., Viswanathan, B., Viswanath, R. P., and Gopinath, C. S., "Synthesis, Characterization, Electronic Structure, and Photocatalytic Activity of Nitrogen-doped $TiO_2$ Nanocatalyst," Chem. Mater., 17, 6349-6353 (2005). https://doi.org/10.1021/cm052047v
  14. Sakthivel, S., Janczarek, M., and Kisch, H., "Visible Light Activity and Photoelectrochemical Properties of Nitrogen Doped $TiO_2$," J. Phys. Chem. B, 108, 19384-19387 (2004). https://doi.org/10.1021/jp046857q
  15. Irie, H., Watanabe, Y., and Hashimoto, K., "Nitrogen-concentration Dependence on Photocatalytic Activity of $TiO_2$- xNx Powders," J. Phys. Chem. B, 107, 5483-5486 (2003). https://doi.org/10.1021/jp030133h
  16. Aoki, K., Morikawa, T., Ohwaki, T., and Taga, Y., "Photocatalytic Degradation of Formaldehyde and Toluene Mixtures in air with a Nitrogen-doped $TiO_2$ Photocatalyst," Chem. Lett., 35, 616-617 (2006). https://doi.org/10.1246/cl.2006.616
  17. Chen, X., and Burda, C., "Photoelectron Spectroscopic Investigation of Nitrogen-Doped Titania Nanoparticles," J. Phys. Chem. B, 108, 15446-15449 (2004). https://doi.org/10.1021/jp0469160
  18. Tokudome, H., and Miyauchi, M., "NX Doped $TiO_2$ Nanotube with Visible Light Activity," Chem. Lett., 33, 1108-1109 (2004). https://doi.org/10.1246/cl.2004.1108
  19. Senthilnathan, J., and Philip, L., "Photocatalytic Degradation of Lindane under UV and Visible Light Using N-doped $TiO_2$," Chem. Eng. J., 161, 83-92 (2010). https://doi.org/10.1016/j.cej.2010.04.034

Cited by

  1. Control of Chlorinated Volatile Pollutants at Indoor Air Levels Using Polymer-based Photocatalyst, Composite vol.19, pp.2, 2013, https://doi.org/10.7464/ksct.2013.19.2.105