References
- Lewis, N. S.; Nocera, D. G. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 15729-15735. https://doi.org/10.1073/pnas.0603395103
- Barreca, D.; Carraro, G.; Gombac, V.; Gasparotto, A.; Maccato, C.; Fornasiero, P.; Tondello, E. Adv. Funct. Mater. 2011, 21, 2611- 2623. https://doi.org/10.1002/adfm.201100242
- Maeda, K.; Domen, K. J. Phys. Chem. Lett. 2010, 1, 2655-2661. https://doi.org/10.1021/jz1007966
- Kitano, M.; Hara, M. J. Mater. Chem. 2010, 20, 627-641. https://doi.org/10.1039/b910180b
- Kudo, A.; Miseki, Y. Chem. Soc. Rev. 2009, 38, 253-278. https://doi.org/10.1039/b800489g
- Bang, J. H.; Helmich, R. J.; Suslick, K. S. Adv. Mater. 2008, 20, 2599-2603. https://doi.org/10.1002/adma.200703188
- Osterloh, F. E. Chem. Mater. 2008, 20, 35-54. https://doi.org/10.1021/cm7024203
- Fujishima, A.; Honda, K. Nature 1972, 238, 37-38. https://doi.org/10.1038/238037a0
- Chen, X.; Mao, S. S. Chem. Rev. 2007, 107, 2891-2959. https://doi.org/10.1021/cr0500535
- Liu, G.; Wang, L.; Yang, H. G.; Cheng, H.-M.; Lu, G. Q. J. Mater. Chem. 2010, 20, 831-843. https://doi.org/10.1039/b909930a
- Lee, K.; Kim, D.; Roy, P.; Paramasivam, I.; Birajdar, B. I.; Spiecker, E.; Schmuki, P. J. Am. Chem. Soc. 2010, 132, 1478- 1479. https://doi.org/10.1021/ja910045x
- Roy, P.; Das, C.; Lee, K.; Hahn, R.; Ruff, T.; Moll, M.; Schmuki, P. J. Am. Chem. Soc. 2011, 133, 5629-5631. https://doi.org/10.1021/ja110638y
- Yan, J.; Zhou, F. J. Mater. Chem. 2011, 21, 9406-9418. https://doi.org/10.1039/c1jm10274e
- Shankar, K.; Basham, J. I.; Allam, N. K.; Varghese, O. K.; Mor, G. K.; Feng, X.; Paulose, M.; Seabold, J. A.; Choi, K.-S.; Grimes, C. A. J. Phys. Chem. C 2009, 113, 6327-6359. https://doi.org/10.1021/jp809385x
- Li, S.; Zhang, G.; Guo, D.; Yu, L.; Zhang, W. J. Phys. Chem. C 2009, 113, 12759-12765. https://doi.org/10.1021/jp903037f
- Allam, N. K.; Poncheri, A. J.; El-Sayed, M. A. ACS Nano 2011, 5, 5056-5066. https://doi.org/10.1021/nn201136t
- Bang, J. H.; Kamat, P. V. Adv. Funct. Mater. 2010, 20, 1970-1976. https://doi.org/10.1002/adfm.200902234
- Wolcott, A.; Smith, W. A.; Kuykendall, T. R.; Zhao, Y.; Zhang, J. Z. Small 2009, 5, 104-111. https://doi.org/10.1002/smll.200800902
- Bak, T.; Nowotny, J.; Sucher, N. J.; Wachsman, E. J. Phys. Chem. C 2011, 115, 15711-15738. https://doi.org/10.1021/jp2027862
- Tena-Zaera, R.; Katty, A.; Bastide, S.; Levy-Clement, C. Chem. Mater. 2007, 19, 1626-1632. https://doi.org/10.1021/cm062390f
- Cocivera, M.; Darkowski, A.; Love, B. J. Electrochem. Soc. 1984, 131, 2514-2517. https://doi.org/10.1149/1.2115350
- Zhang, J.; Bang, J. H.; Tang, C.; Kamat, P. V. ACS Nano 2010, 4, 387-395. https://doi.org/10.1021/nn901087c
- Paramasivam, I.; Nah, Y.-C.; Das, C.; Shrestha, N. K.; Schmuki, P. Chem. Eur. J. 2010, 16, 8993-8997. https://doi.org/10.1002/chem.201000397
- Lin, Y.; Zhou, S.; Sheehan, S. W.; Wang, D. J. Am. Chem. Soc. 2011, 133, 2398-2401. https://doi.org/10.1021/ja110741z
- Shi, J.; Hara, Y.; Sun, C.; Anderson, M. A.; Wang, X. Nano Lett. 2011, 11, 3413-3419. https://doi.org/10.1021/nl201823u
- Su, J.; Guo, L.; Bao, N.; Grimes, C. A. Nano Lett. 2011, 11, 1928- 1933. https://doi.org/10.1021/nl2000743
- McDonald, K. J.; Choi, K.-S. Chem. Mater. 2011, 23, 4863-4869. https://doi.org/10.1021/cm202399g
- Lei, Y.; Zhao, G.; Liu, M.; Zhang, Z.; Tong, X.; Cao, T. J. Phys. Chem. C 2009, 113, 19067-19076. https://doi.org/10.1021/jp9071179
- Chen, D.; Zhang, H.; Hu, S.; Li, J. J. Phys. Chem. C 2007, 112, 117-122.
- Shaogui, Y.; Xie, Q.; Xinyong, L.; Yazi, L.; Shuo, C.; Guohua, C. Phys. Chem. Chem. Phys. 2004, 6, 659-664. https://doi.org/10.1039/b308336e
- Wang, J.; Liu, X.-L.; Yang, A.-L.; Zheng, G.-L.; Yang, S.-Y.; Wei, H.-Y.; Zhu, Q.-S.; Wang, Z.-G. Appl. Phys. A 2011, 103, 1099- 1103. https://doi.org/10.1007/s00339-010-6048-7
- Gerischer, H. J. Electrochem. Soc. 1966, 113, 1174-1182. https://doi.org/10.1149/1.2423779
- Wolcott, A.; Smith, W. A.; Kuykendall, T. R.; Zhao, Y.; Zhang, J. Z. Adv. Funct. Mater. 2009, 19, 1849-1856. https://doi.org/10.1002/adfm.200801363
- Kostedt; Ismail, A. A.; Mazyck, D. W. Ind. Eng. Chem. Res. 2008, 47, 1483-1487. https://doi.org/10.1021/ie071255p
- Yang, X.; Wolcott, A.; Wang, G.; Sobo, A.; Fitzmorris, R. C.; Qian, F.; Zhang, J. Z.; Li, Y. Nano Lett. 2009, 9, 2331-2336. https://doi.org/10.1021/nl900772q
- Steinmiller, E. M. P.; Choi, K.-S. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 20633-20636. https://doi.org/10.1073/pnas.0910203106
- Paulauskas, I. E.; Katz, J. E.; Jellison, G. E., Jr.; Lewis, N. S.; Boatner, L. A. Thin Solid Films 2008, 516, 8175-8178. https://doi.org/10.1016/j.tsf.2008.04.026
- Feng, X.; Zhai, J.; Jiang, L. Angew. Chem. Int. Ed. 2005, 44, 5115- 5118. https://doi.org/10.1002/anie.200501337
- Gu, F.; Gai, L.; Shao, W.; Li, C.; Schmidt-Mende, L. Chem. Commun. 2011, 47, 8400-8402. https://doi.org/10.1039/c1cc12309b
- George, S. M. Chem. Rev. 2009, 110, 111-131.
- Bang, J. H.; Suslick, K. S. Adv. Mater. 2009, 21, 3186-3190. https://doi.org/10.1002/adma.200802309
- Subramanian, V.; Wolf, E. E.; Kamat, P. V. J. Am. Chem. Soc. 2004, 126, 4943-4950. https://doi.org/10.1021/ja0315199
- Jakob, M.; Levanon, H.; Kamat, P. V. Nano Lett. 2003, 3, 353- 358. https://doi.org/10.1021/nl0340071
- Smith, W.; Wolcott, A.; Fitzmorris, R. C.; Zhang, J. Z.; Zhao, Y. J. Mater. Chem. 2011, 21, 10792-10800. https://doi.org/10.1039/c1jm11629k
- Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; Lewis, N. S. Chem. Rev. 2010, 110, 6446-6473. https://doi.org/10.1021/cr1002326
- Zhang, J.; Tang, C.; Bang, J. H. Electrochem. Commun. 2010, 12, 1124-1128. https://doi.org/10.1016/j.elecom.2010.05.046
- Law, M.; Greene, L. E.; Radenovic, A.; Kuykendall, T.; Liphardt, J.; Yang, P. J. Phys. Chem. B 2006, 110, 22652-22663. https://doi.org/10.1021/jp0648644
Cited by
- Influence of Nanoporous Oxide Substrate on the Performance of Photoelectrode in Semiconductor-Sensitized Solar Cells vol.33, pp.12, 2012, https://doi.org/10.5012/bkcs.2012.33.12.4063
- Controllable fabrication of nanostructured materials for photoelectrochemical water splitting via atomic layer deposition vol.43, pp.22, 2014, https://doi.org/10.1039/C3CS60370A
- Enhanced performance of PbS-sensitized solar cells via controlled successive ionic-layer adsorption and reaction vol.17, pp.15, 2015, https://doi.org/10.1039/C5CP00941C
- Synthesis and characterization of TiO2–ZnO core–shell nanograss hetero-structure and its application in dye-sensitized solar cell (DSSC) vol.26, pp.7, 2015, https://doi.org/10.1007/s10854-015-3005-4
- Improvement of the photocatalytic degradation property of atomic layer deposited ZnO thin films: the interplay between film properties and functional performances vol.3, pp.21, 2015, https://doi.org/10.1039/C5TA01637A
- layer: simple sol–gel preparation, and optical, photocatalytic and photoelectrochemical properties vol.3, pp.24, 2015, https://doi.org/10.1039/C5TA01087J
- superstructure as a multifunctional material for energy conversion and storage vol.3, pp.7, 2015, https://doi.org/10.1039/C4TA05988C
- Enhanced Photoelectrochemical Activity of ZnO-Coated TiO2 Nanotubes and Its Dependence on ZnO Coating Thickness vol.11, pp.1, 2016, https://doi.org/10.1186/s11671-016-1309-9
- Tuning The Photoactivity of Zirconia Nanotubes-Based Photoanodes via Ultrathin Layers of ZrN: An Effective Approach toward Visible-Light Water Splitting vol.120, pp.13, 2016, https://doi.org/10.1021/acs.jpcc.6b01144
- Comparative study of the properties of TiO2 nanoflower and TiO2-ZnO composite nanoflower and their application in dye-sensitized solar cells vol.23, pp.7, 2017, https://doi.org/10.1007/s11581-017-2010-4
- vol.6, pp.1, 2017, https://doi.org/10.1680/jbibn.16.00003
- Nanotubes from Anodic Oxidation Decorated with ZnO Nanostructures vol.161, pp.10, 2014, https://doi.org/10.1149/2.0431410jes
- TiO2–SrTiO3 composite photoanode: effect of strontium precursor concentration on the performance of dye-sensitized solar cells vol.125, pp.1, 2019, https://doi.org/10.1007/s00339-018-2344-4
- Atomic layer deposition grown MOx thin films for solar water splitting: Prospects and challenges vol.33, pp.1, 2012, https://doi.org/10.1116/1.4904729
- A Heterojunction Design of Single Layer Hole Tunneling ZnO Passivation Wrapping around TiO 2 Nanowires for Superior Photocatalytic Performance vol.6, pp.None, 2012, https://doi.org/10.1038/srep30587