DOI QR코드

DOI QR Code

발효 당용액 생산자원으로서 담수조류 그물말의 유용성

Usefulness of Freshwater Alga Water-net (Hydrodictyon reticulatum) as Resources for Production of Fermentable Sugars

  • 김슬기 (한국화학연구원 바이오화학연구센터) ;
  • 황현진 (한국화학연구원 바이오화학연구센터) ;
  • 김재덕 (한국화학연구원 바이오화학연구센터) ;
  • 고은혜 (한국화학연구원 바이오화학연구센터) ;
  • 최정섭 (한국화학연구원 바이오화학연구센터) ;
  • 김진석 (한국화학연구원 바이오화학연구센터)
  • Kim, Seul-Ki (Research Center for Biobased Chemistry, Korea Research Institute of Chemical Technology) ;
  • Hwang, Hyun-Jin (Research Center for Biobased Chemistry, Korea Research Institute of Chemical Technology) ;
  • Kim, Jae-Deog (Research Center for Biobased Chemistry, Korea Research Institute of Chemical Technology) ;
  • Ko, Eun-Hye (Research Center for Biobased Chemistry, Korea Research Institute of Chemical Technology) ;
  • Choi, Jung-Sup (Research Center for Biobased Chemistry, Korea Research Institute of Chemical Technology) ;
  • Kim, Jin-Seog (Research Center for Biobased Chemistry, Korea Research Institute of Chemical Technology)
  • 투고 : 2012.04.16
  • 심사 : 2012.06.01
  • 발행 : 2012.06.30

초록

본 연구에서는 담수녹조류인 그물말(Hydrodictyon reticulatum, HR)을 산업바이오 자원으로서 활용하는 방안을 강구하고자 일차적으로 효소당화의 용이성을 검토하였다. HR에 대하여 효소당화를 2% 고형분 함량에서 동일조건으로 수행했을 때, 다른 종류의 바이오매스(Spirulina, Chlorella, Scenedesmus, Cladophora, Corn stover)보다 glucose 수득율이 가장 높았다. HR을 분말화하지 않아도 최적조건의 효소처리량에서 당화가 모두 이루어지며, HR 당화용액의 citrate buffer strength가 0.1mM까지 낮아도 당수득율에 큰 지장이 없었다. 또한 HR을 고온의 전처리없이 실온상태에서 바로 당화시켜도 $120^{\circ}C$ 처리에 비해 10% 미만의 당화율 감소만 나타내었다. 발효균주의 일반적인 생장적온인 $37^{\circ}C$ 또는 pH 6.5에서도 당화가 정상적으로 잘 일어나 당화/발효를 동시에 진행시킬 수 있는 바이오매스로의 특징을 보였다. 효소량을 기준량의 1/10정도 줄여도 최적조건의 70~80%에 해당하는 glucose 수득율을 나타내었다. 그리고 본 실험조건에서 HR의 고형분 함량 10%까지 당수득율이 떨어지지 않았고 15%이상되어야 감소하기 시작하여 고농도 당용액 생산에도 좋은 특성을 나타내었다. 이들의 제반 결과는 HR이 당화가 매우 쉽게 일어나는 특징을 가진 조류 바이오매스임을 나타내준다. 이러한 장점뿐만 아니라 수집하기가 매우 용이한 사상조류(flilamentous algae)이기 때문에 다른 종류의 조류 바이오매스에 비해 바이오화학제품 생산을 위한 원료로서 향후 이용가치가 매우 높을 것으로 판단된다.

To investigate the usefulness of freshwater alga Water-net (Hydrodictyon reticulatum, HR) as resources for production of fermentable sugars, the easiness of enzymatic saccharification was evaluated at first. When 6 plant materials (HR, Spirulina, Chlorella, Scenedesmus, Cladophora, Corn stover) were enzymatically hydrolyzed with 2% solid loading at the same condition, HR showed the highest ratio of saccharification based on glucose production. No milled HR was also completely saccharified at the amounts of optimal enzyme mixture. Glucose yield was not changed though the citrate buffer strength for saccharification was decreased from 0.1 M to 0.1 mM. Only about 10% yield reduction was observed compared to that of $120^{\circ}C$ treatment when HR was enzymatically hydrolyzed at room temperature. The saccharification was normally occurred at $37^{\circ}C$ and pH 6.5 which is general growth condition of fermentable microrganisms, suggesting that HR have a biomass characteristics applicable for the simultaneous saccharification and fermentation. The saccharification was occurred by more than 70~80% of one of the best condition although the supplied enzyme amounts was reduced to 1/10 volume. And the glucose yield by enzymatic hydrolysis was not decreased by 10% HR solid loading and began to decrease at more than 15% solid contents. Above these results show that HR is an interesting algal biomass which is relatively easy to be saccharified by hydrolyzing enzymes. In addition, HR is a flilamentous alga and very easy to be collected. Therefore, HR seems to be an useful and valuable resources in the economical production of fermentable sugars for manufacture of bio-chemical products.

키워드

참고문헌

  1. Adams, J. M., J. A. Gallagher, and I. S. Donnison. 2009. Fermentation study on Saccharina latissima for bioethanol production considering variable pre-treatments. J. Appl. Phycol. 21:569-574. https://doi.org/10.1007/s10811-008-9384-7
  2. Alvira, P., E. Tomas-Pejo, M. Ballesteros, and M. J. Negro. 2010. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis : A review. Bioresource Tech. 101:4851-4861. https://doi.org/10.1016/j.biortech.2009.11.093
  3. Aparicio Alonso, P. J., M. A. Quinones Gomez, and F. G. Witt Sousa. 2006. Purification of surface waters using filamentous algae to absorb and recycle nutrients and/or heavy metals and generate biomass. Spain patent NO. ES 2251286.
  4. Appler, H. N. 1985. Evaluation of Hydrodictyon reticulatum as protein source in feeds for Oreochromis (Tilapia) niloticus and Tilapia zillii. J. Fish Biol. 27(3):327-334. https://doi.org/10.1111/j.1095-8649.1985.tb04034.x
  5. Choi J. A., J. H. Hwang, B. A. Dempsey, R. A. I. Abou-Shanab, B. Min, H. Song, D. S. Lee, J. R. Kim, Y. Cho, S. Hon, and B.-H. Jeon. 2011. Enhancement of fermentative bioenergy (ethanol/ hydrogen) production using ultrasonication of Scenedesmus obliquus YSW15 cultivated in swine wastewater effluent. Energy & Environmental Sci. 4:3513-3520. https://doi.org/10.1039/c1ee01068a
  6. Choi, S. P., M. T. Nguyen, and S. J. Sim. 2010. Enzymatic pretreatment of Chlamydomonas reinhardtii biomass fro ethanol production. Bioresource Tech. 101:5330-5336. https://doi.org/10.1016/j.biortech.2010.02.026
  7. Fanyan, G. G., A. G. Ladatko, V. D. Agarkov, and V. G. Vlasov. 2008. Method of weed control in paddy fallow field of rice crop rotation. Patent No. RU 2330402.
  8. Fitzgerald, G. P. 1966. Use of potassium permanganate for control of problem algae. J. Amer. Water Works Assoc. 58(5):609-614. https://doi.org/10.1002/j.1551-8833.1966.tb01619.x
  9. Ge, L. P. Wang, and H. Mou. 2011. Study on saccharification techniques of seaweed wastes for the transformation of ethanol. Renewable Energy 36(1): 84-89. https://doi.org/10.1016/j.renene.2010.06.001
  10. Ghazala, B., M. Shameel, M. I. Choudhary, S. Shahzad, and S. M. Leghari. 2004. Phycochemistry and bioactivity of two microalgae (Volvocophyta) from Sindh. Inter. J. Biol. Biotech. 1(3):343-350.
  11. Hall, J. and G. Payne. 1997. Factors controlling the growth of field populations of Hydrodictyon reticulatum in New Zealand. J. Appl. Phycol. 9(3): 229-236. https://doi.org/10.1023/A:1007988412729
  12. Harun, R. and M. K. Danquah. 2011. Enztmatic hydrolysis of microalgal biomass for bioethanol production. Chemical Engin. J. 168(3):1079-1084. https://doi.org/10.1016/j.cej.2011.01.088
  13. Harun, R., M. Singh, G. M. Forde, and M. K. Danquah. 2010. Bioprocess engineering of microalgae to produce a variety of consumer products. Renew. Sustain. Energy Rev. 14:1037-1047. https://doi.org/10.1016/j.rser.2009.11.004
  14. Hawes, I. and R. Smith. 1993. Influence of environmental factors on the growth in culture of a New Zealand strain of the fast-spreading alga Hydrodictyon reticulatum (water-net). J. Appl. Phycol. 5(4):437-445. https://doi.org/10.1007/BF02182736
  15. Hendriks, A. T. W. M. and G. Zeeman. 2009. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Tech. 100:10-18. https://doi.org/10.1016/j.biortech.2008.05.027
  16. Isa, A., Y. Mishima, O. Takimura, and T. Minowa. 2009. Preliminary study on ethanol production by using macro green algae. J. Japan Inst. Energy 88:912-917. https://doi.org/10.3775/jie.88.912
  17. Jeon, B. S. and M. G. Ro. 2011. Production process of monosaccharide and amino acid form seaweed by sub- and supercritical water hydrolysis. Patent No. KR 1057290.
  18. John, R. P., G. S. Anisha, K. M. Nampoothiri, and A. Pandey. 2011. Micro and macroalgal biomass : A renewable source for bioethanol. Bioresource Tech. 102:186-193. https://doi.org/10.1016/j.biortech.2010.06.139
  19. Kang, D. H., H. Y. Lee, J. G. Han, H. S. Park, H. S. Lee, and R. S. Kang. 2009. Liquefied extract of marine algae for producing bio-ethanol under high pressure and method for producing the same. Patent No. KR 0908425.
  20. Kim, G. S., M. K. Shin, Y. J. Kim, H. J. Ryu, J. J. Yoon, S. G. Lee, and C. Kim. 2010. Method of producing hydrolysate from sea algae using acidic ionic liquid catalysts. Publication Patent No. KR 10-2010-0024665.
  21. Kim, G. S., M. K. Shin, Y. J. Kim, K. K. Oh, J. S. Kim, H. J. Ryu, and K. H. Kim. 2009. Method of producing biofuel using sea algae. Publication Patent No. KR 10-2009-0025221.
  22. Kim, N. J., H. Li, K. Jung, H. N. Chang, and P. C. Lee. 2011. Ethanol production from marine algal hydrolysates using Escherichia coli KO11. Bioresource Tech. 102:7466-7469. https://doi.org/10.1016/j.biortech.2011.04.071
  23. Lee J. Y., C. Yoo, S. Y. Jun, C. Y Ahn, and H. M Oh. 2010. Comparison of several methods for effective lipid extraction from microalgae. Bioresource Tech. 101(1):S75-S77. https://doi.org/10.1016/j.biortech.2009.03.058
  24. Lee, J. U., J. I. Choi, J. H. Kim, Y. H. Yoon, B. S. Song, and M. U. Pyun. 2011. Preparation method of biofuel from sea algae using irradiation. Patent No. KR 1083608.
  25. Lee, S. M., B. J. Yu, Y. M. Kim, S. J. Choi, J. M. Ha, and J. H. Lee. 2009. Production of bio-ethanol agar using Saccharomyces cerevisiae. J. Korean Ind. Eng. Chem. 20(3):290-295.
  26. Legros, A., E. Dujardin, F. Collard, H. Naveau, E. J. Nyns, and C. Sironval. 1985. An integrated system : mass algae culture in polluted luke-warm water for production of methane, high-value products and animal feed. Belg. Comm. Eur. Communities (EUR 10024, Energy Biomass) : 369-373.
  27. Mata, T. M., A. A. Martins, and N. S. Caetano. 2010. Microalgae for biodiesel production and other applications : A review. Renew. Sustain. Energy Rev. 14(1):217-232. https://doi.org/10.1016/j.rser.2009.07.020
  28. Nguyen, C. M., J. S. Kim, H. J. Hwang, M. S. Park, G. J. Choi, Y. H. Choi, K. S. Jang, and J. C. Kim. 2012. Production of L-lactic acid from a green microalga, Hydrodictyon reticulatum, by Lactobacillus paracasei LA104 isolated from the traditional Korean food, makgeolli. Bioresource Tech. 110:552-559. https://doi.org/10.1016/j.biortech.2012.01.079
  29. Nguyen, M. T., S. P. Choi, J. Lee, and S. J. Sim. 2009. Hydrothermal acid pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. J. Microbiol. Biotechnol. 19:161-166. https://doi.org/10.4014/jmb.0810.578
  30. NREL. 2010. Chemical analysis and testing standard procedure, no. 001-014, National Renewable Energy Labs., Golden, CO. http://www.nrel.gov/biomass/analytical_procedures.html.
  31. Nyns, E. J. 1981. Methane production by anaerobic digestion of algae. Belg. Comm. Eur. Communities (EUR 7160):183-194.
  32. Okuda, K., K. Oka, A. Onda, K Kajiyoshi, M. Hiraoka, and K. Yanagisawa. 2008. Hydrothermal fractional pretreatment of sea algae and its enhanced enzymatic hydrolysis. J. Chem. Tech. Biotech. 83(6): 836-841. https://doi.org/10.1002/jctb.1877
  33. Rai, U. N. and P. Chandra. 1989. Removal of heavy metals from polluted waters by Hydrodictyon reticulatum (Linn.) Lagerheim. Sci. Total Environ. 87-88:509-515. https://doi.org/10.1016/0048-9697(89)90257-X
  34. Scott, S. A., M. P. Davey, J. S. Dennis, I. Horst, C. J. Howe, D. J. Lea-Smith, and A. G. Smith. 2010. Biodiesel from algae : challenges and prospects. Current Opinion in Biotech. 21(3):277-286. https://doi.org/10.1016/j.copbio.2010.03.005
  35. Singh, A., S. K. Mehta, and J. P. Gaur. 2007. Removal of heavy metals from aqueous solution by common freshwater filamentous algae. World J. Microbiol. Biotech. 23(8):1115-1120. https://doi.org/10.1007/s11274-006-9341-z
  36. Stary, J., A. Zeman, and K. Kratzer. 1987. The uptake of ammonium, nitrite and nitrate ions by Hydrodictyon reticulatum. Acta Hydrochimica et Hydrobiologica 15(2):193-198. https://doi.org/10.1002/aheh.19870150216
  37. Ueno, Y., N. Kurano, and S. Miyachi. 1998. Ethanol production by dark fermentation in the marine green alga, Chlorococcum littorale. J. Ferment. Bioeng. 86(1):38-43. https://doi.org/10.1016/S0922-338X(98)80031-7
  38. Wang, Z. H., Q. Q. Lin, S. Qi, Y. Z. Qi, and Y. M. Luo. 1999. Studies on the ability of Hydrodictyon reticulatum to remove nitrogen and phosphorus under different environmental condition. Zhongguo Huanjing Kexue 19(3):257-261.
  39. Wells, R. D. S. 1999. The rise and fall of water-net (Hydrodictyon reticulatum) in New Zealand. J. of Aquat. Plant Manage. 37:49-54.
  40. Wi, S. G., H. J. Kim, S. A. Mahadevan, D. J. Yang, and H. J. Bae. 2009. The potential value of the seaweed Ceylon moss (Gelidium amansii) as an alternative bioenergy resource. Bioresource Tech. 100:6658-6660. https://doi.org/10.1016/j.biortech.2009.07.017
  41. Wyman, C. E. 2007. What is (and is not) vital to advancing cellulosic ethanol. Trends Biotechnol. 25(4):153-157. https://doi.org/10.1016/j.tibtech.2007.02.009
  42. Yoon, B. T., Y. W. Kim, K. W. Chung, and J. S. Kim. 2011. Enzymatic hydrolysis of pre-treated Ulva pertusa with alkaline peroxide. Appl. Chem. Eng. 22(3):336-339.
  43. Zhou, D., L. Zhang, S. Zhang, H. Fu, and J. Chen. 2010. Hydrothermal Liquefaction of macroalgae Enteromorpha prolifera to bio-oil. Energy Fuels 24:4054-4061. https://doi.org/10.1021/ef100151h
  44. Zhou, N., Y. Zhang, X. Wu, X. Gong, and Q. Wang, 2011. Hydrolysis of Chlorella biomass for fermentable sugars in the presence of HCl and $MgCl_{2}$, Bioresource Tech. 102(21):10158-10161. https://doi.org/10.1016/j.biortech.2011.08.051

피인용 문헌

  1. Hydrolysis Methods for the Efficient Manufacture of Sugar Solutions from the Freshwater Alga Water-net (Hydrodictyon reticulatum) vol.2, pp.2, 2013, https://doi.org/10.5660/WTS.2013.2.2.176